import numpy as np
import urllib.request
from pathlib import Path
import warnings
import time
import cv2 as cv
import copy
import matplotlib.pyplot as plt
import matplotlib as mpl
import matplotlib.cm as cm
from matplotlib.backend_tools import ToolBase, ToolToggleBase
from machinevisiontoolbox.base.color import gamma_decode, colorspace_convert
from machinevisiontoolbox.base.types import float_image, int_image
from machinevisiontoolbox.base.data import mvtb_path_to_datafile
# for getting screen resolution
# import pyautogui # requires pip install pyautogui
from spatialmath.base import islistof
__last_windowname = None
__last_window_number = 0
[docs]
def idisp(
im,
colororder="RGB",
matplotlib=True,
block=None,
fps=None,
fig=None,
ax=None,
reuse=False,
colormap=None,
ncolors=None,
black=0,
darken=None,
powernorm=False,
gamma=None,
vrange=None,
badcolor=None,
undercolor=None,
overcolor=None,
title=None,
grid=False,
axes=True,
gui=True,
frame=True,
plain=False,
colorbar=False,
square=True,
width=None,
height=None,
flatten=False,
ynormal=False,
extent=None,
coordformat=None,
savefigname=None,
**kwargs,
):
"""
Interactive image display tool
:param im: image to display
:type im: ndarray(H,W), ndarray(H,W,3)
:param colororder: color order, defaults to "RGB"
:type colororder: str
:param matplotlib: plot using Matplotlib (True) or OpenCV (False), defaults to True
:type matplotlib: bool, optional
:param block: after display, Matplotlib blocks until window closed or for the specified time period, defaults to False
:type block: bool, float, optional
:param fps: frames per second, Matplotlib blocks for 1/fps seconds after display, defaults to None
:type fps: float, optional
:param fig: Matplotlib figure handle to display image on, defaults to new figure
:type fig: int, optional
:param ax: Matplotlib axis object to plot on, defaults to new axis
:type ax: axis object, optional
:param reuse: plot into current figure, skips setup overhead, defaults to False
:type reuse: bool, optional
:param colormap: colormap name or Matplotlib colormap object
:type colormap: str or matplotlib.colors.Colormap
:param ncolors: number of colors in colormap
:type ncolors: int, optional
:param black: set black (zero) pixels to this value, default 0
:type black: int or float
:param darken: darken the image by scaling pixel values by this amount,
if ``darken`` is True then darken by 0.5
:type darken: float, bool, optional
:param powernorm: Matplotlib power-law normalization
:type powernorm: array_like(2), optional
:param gamma: gamma correction applied before display
:type gamma: float, optional
:param vrange: minimum and maximum values for colormap, defaults to minimum
and maximum values from image data.
:type vrange: array_like(2), optional
:param badcolor: name of color to display when value is NaN
:type badcolor: str, optional
:param undercolor: name of color to display when value is less than colormap minimum
:type undercolor: str, optional
:param overcolor: name of color to display when value is less than colormap maximum
:type overcolor: str, optional
:param title: title of figure in figure window
:type title: str, optional
:param grid: display grid lines over image, default False
:type gui: bool, optional
:param axes: display axes on the image, default True
:type axes: bool, optional
:param gui: display GUI/interactive buttons, default True
:type gui: bool, optional
:param frame: display frame around the image, default True
:type frame: bool, optional
:param plain: don't display axes, frame or GUI
:type plain: bool, optional
:param colorbar: add colorbar to image, default False
:type colorbar: bool, optional
:param width: figure width in millimetres, defaults to Matplotlib default
:type width: float, optional
:param height: figure height in millimetres, defaults to Matplotlib default
:type height: float, optional
:param square: set aspect ratio so that pixels are square, default True
:type square: bool, optional
:param ynormal: y-axis increases upward, default False
:type ynormal: bool, optional
:param extent: extent of the image in user units [xmin, xmax, ymin, ymax]
:type extent: array_like(4), optional
:param coordformat: format coordinates and pixel values for the figure window toolbar
:type coordformat: callable returning string
:param savefigname: if not None, save figure as savefigname (default eps)
:type savefigname: str, optional
:param kwargs: additional options passed through to :func:`matplotlib.pyplot.imshow`.
:return: Matplotlib figure handle and axes handle
:rtype: figure handle, axes handle
Display a greyscale or color image using Matplotlib (if ``matplotlib`` is
True) or OpenCV. The Matplotlib display is interactive allowing zooming and
pixel value picking.
Greyscale images are displayed in indexed mode: the image pixel value is
mapped through the color map to determine the display pixel value. The
colormap is specified by a string or else a ``Colormap`` subclass object.
Valid strings are any valid `matplotlib colormap names <https://matplotlib.org/tutorials/colors/colormaps.html>`_ or
========= ===============================================
Colormap Meaning
========= ===============================================
grey zero is black, maximum value is white
inverted zero is white, maximum value is black
signed negative is red, 0 is white, positive is blue
invsigned negative is red, 0 is black, positive is blue
random random values
========= ===============================================
The argument ``block`` has the following functions
=================== ==================================================================================
``block`` Action after display
=================== ==================================================================================
``False`` (default) Call ``plt.show(block=False)``, don't block
``True`` Call ``plt.show(block=True)``, block
``None`` Don't call ``plt.show()``, don't block, in Jupyter subsequents plots will be added
t:float Block for set time, calls ``plt.pause(t)``. See also ``fps`` option.
=================== ==================================================================================
The ``coordformat`` function is called with (u, v) coordinates and the image is in the variable ``im`` which
is in scope, but not passed, and is an ndarray(H,W) or ndarray(H,W,P).
Example::
>>> from machinevisiontoolbox import iread, idisp
>>> im, file = iread('monalisa.png')
>>> idisp(im)
.. note::
- For grey scale images the minimum and maximum image values are
mapped to the first and last element of the color map, which by
default ('grey') is the range black to white. To set your own
scaling between displayed grey level and pixel value use the ``vrange``
option.
:references:
- Robotics, Vision & Control for Python, Section 10.1, P. Corke, Springer 2023.
:seealso: :func:`matplotlib.imshow` `cv2.imshow <https://docs.opencv.org/4.x/d7/dfc/group__highgui.html#ga453d42fe4cb60e5723281a89973ee563>`_
"""
# options yet to implement
# 'axis': False,
# 'here': False,
# 'clickfunc': None,
# 'print': None,
# 'wide': False,
# 'cscale': None,
# handle list of images, or image with multiple frames
# plain: hide GUI, frame and axes:
if plain:
gui = False
axes = False
frame = False
if isinstance(block, float):
fps = 1 / block
block = None
# if we are running in a Jupyter notebook, print to matplotlib,
# otherwise print to opencv imshow/new window. This is done because
# cv.imshow does not play nicely with .ipynb
if matplotlib: # _isnotebook() and
## display using matplotlib
# if flatten:
# # either make new subplots for each channel
# # or concatenate all into one large image and display
# # TODO can we make axes as a list?
# # for now, just concatenate:
# # first check how many channels:
# if im.ndim > 2:
# # create list of image channels
# imcl = [im[:, :, i] for i in range(im.shape[2])]
# # stack horizontally
# im = np.hstack(imcl)
# # else just plot the regular image - only one channel
if title is None:
title = "Machine Vision Toolbox for Python"
if len(plt.get_fignums()) == 0:
# there are no figures, create one
fig, ax = plt.subplots() # fig creates a new window
else:
# there are existing figures
if reuse:
# attempt to reuse an axes, saves all the setup overhead
if ax is None:
ax = plt.gca()
for c in ax.get_children():
if isinstance(c, mpl.image.AxesImage):
c.set_data(im)
set_window_title(title)
if fps is not None:
# print("pausing", 1.0 / fps)
plt.pause(1.0 / fps)
if block is not None:
plt.show(block=block)
return
if fig is not None:
# make this figure the current one
plt.figure(fig)
if ax is None:
fig, ax = plt.subplots() # fig creates a new window
# aspect ratio:
if not square:
mpl.rcParams["image.aspect"] = "auto"
# hide interactive toolbar buttons (must be before figure creation)
if not gui:
mpl.rcParams["toolbar"] = "None"
if darken is True:
darken = 0.5
# # experiment with addign buttons to the navigation bar
# matplotlib.rcParams["toolbar"] = "toolmanager"
# class LineTool(ToolToggleBase):
# def trigger(self, *args, **kwargs):
# print('hello from trigger')
# tm = fig.canvas.manager.toolmanager
# tm.add_tool('newtool', LineTool)
# fig.canvas.manager.toolbar.add_tool(tm.get_tool("newtool"), "toolgroup")
# get screen resolution:
# swidth, sheight = pyautogui.size() # pixels TODO REPLACE THIS WITH STUFF FROM BDSIM
# mpl_backend = mpl.get_backend()
# if mpl_backend == 'Qt5Agg':
# from PyQt5 import QtWidgets
# app = QtWidgets.QApplication([])
# screen = app.primaryScreen()
# if screen.name is not None:
# print(' Screen: %s' % screen.name())
# size = screen.size()
# print(' Size: %d x %d' % (size.width(), size.height()))
# rect = screen.availableGeometry()
# print(' Available: %d x %d' % (rect.width(), rect.height()))
# sw = rect.width()
# sh = rect.height()
# #dpi = screen.physicalDotsPerInch()
# dpiscale = screen.devicePixelRatio() # is 2.0 for Mac laptop screen
# elif mpl_backend == 'TkAgg':
# window = plt.get_current_fig_manager().window
# sw = window.winfo_screenwidth()
# sh = window.winfo_screenheight()
# print(' Size: %d x %d' % (sw, sh))
# else:
# print('unknown backend, cant find width', mpl_backend)
# dpi = None # can make this an input option
# if dpi is None:
# dpi = mpl.rcParams['figure.dpi'] # default is 100
if width is not None:
fig.set_figwidth(width / 25.4) # inches
if height is not None:
fig.set_figheight(height / 25.4) # inches
## Create the colormap and normalizer
norm = None
cmap = None
if colormap == "invert":
cmap = "Greys"
elif colormap == "signed":
# signed color map, red is negative, blue is positive, zero is white
cmap = "bwr_r" # blue -> white -> red
min = np.min(im)
max = np.max(im)
# ensure min/max are symmetric about zero, so that zero is white
if abs(max) >= abs(min):
min = -max # lgtm[py/multiple-definition]
else:
max = -min # lgtm[py/multiple-definition]
if powernorm:
norm = mpl.colors.PowerNorm(gamma=0.45)
else:
# if abs(min) > abs(max):
# norm = mpl.colors.Normalize(vmin=min, vmax=abs(min / max) * max)
# else:
# norm = mpl.colors.Normalize(vmin=abs(max / min) * min, vmax=max)
norm = mpl.colors.CenteredNorm()
elif colormap == "invsigned":
# inverse signed color map, red is negative, blue is positive, zero is black
cdict = {
"red": [(0, 1, 1), (0.5, 0, 0), (1, 0, 0)],
"green": [(0, 0, 0), (1, 0, 0)],
"blue": [(0, 0, 0), (0.5, 0, 0), (1, 1, 1)],
}
if ncolors is None:
cmap = mpl.colors.LinearSegmentedColormap("signed", cdict)
else:
cmap = mpl.colors.LinearSegmentedColormap("signed", cdict, N=ncolors)
min = np.min(im)
max = np.max(im)
# ensure min/max are symmetric about zero, so that zero is black
if abs(max) >= abs(min):
min = -max
else:
max = -min
if powernorm:
norm = mpl.colors.PowerNorm(gamma=0.45)
else:
if abs(min) > abs(max):
norm = mpl.colors.Normalize(vmin=min, vmax=abs(min / max) * max)
else:
norm = mpl.colors.Normalize(vmin=abs(max / min) * min, vmax=max)
elif colormap == "grey":
cmap = "gray"
elif colormap == "random":
x = np.random.rand(256 if ncolors is None else ncolors, 3)
cmap = mpl.colors.LinearSegmentedColormap.from_list("my_colormap", x)
else:
cmap = colormap
# choose default grey scale map for non-color image
if cmap is None and len(im.shape) == 2:
cmap = "gray"
# TODO not sure why exclusion for color, nor why float conversion
if im.ndim == 3 and darken is not None:
im = float_image(im) / darken
if isinstance(cmap, str):
# cmap = cm.get_cmap(cmap, lut=ncolors)
cmap = mpl.colormaps[cmap]
if ncolors is not None:
cmap = cmap.resampled(ncolors)
# handle values outside of range
#
# - undercolor, below vmin
# - overcolor, above vmax
# - badcolor, nan, -inf, inf
#
# only works for greyscale image
if im.ndim == 2:
cmap = copy.copy(cmap)
if undercolor is not None:
cmap.set_under(color=undercolor)
if overcolor is not None:
cmap.set_over(color=overcolor)
if badcolor is not None:
cmap.set_bad(color=badcolor)
# elif im.ndim == 3:
# if badcolor is not None:
# cmap.set_bad(color=badcolor)
if black != 0:
if np.issubdtype(im.dtype, np.floating):
m = 1 - black
c = black
im = m * im + c
norm = mpl.colors.Normalize(0, 1)
elif np.issubdtype(im.dtype, bool):
norm = mpl.colors.Normalize(0, 1)
ncolors = 2
else:
max = np.iinfo(im.dtype).max
black = black * max
c = black
m = (max - c) / max
im = (m * im + c).astype(im.dtype)
norm = mpl.colors.Normalize(0, max)
# else:
# # lift the displayed intensity of black pixels.
# # set the greyscale mapping [0,M] to [black,1]
# M = np.max(im)
# norm = mpl.colors.Normalize(-black * M / (1 - black), M)
if darken:
norm = mpl.colors.Normalize(np.min(im), np.max(im) / darken)
if gamma:
cmap.set_gamma(gamma)
# print('Colormap is ', cmap)
# build up options for imshow
options = kwargs
if ynormal:
options["origin"] = "lower"
if extent is not None:
options["extent"] = extent
# display the image
if len(im.shape) == 3:
# reverse the color planes if it's color
if colororder not in ("RGB", "BGR"):
raise ValueError("unknown colororder ", colororder)
if colororder == "BGR":
im = im[:, :, ::-1]
h = ax.imshow(im, norm=norm, cmap=cmap, **options)
else:
if norm is None:
# exclude NaN values
if vrange is None:
min = np.nanmin(im)
max = np.nanmax(im)
else:
min, max = vrange
if colorbar is not False and ncolors is not None:
# colorbar requested with finite number of colors
# adjust range so that ticks fall in middle of color segment
min -= 0.5
max += 0.5
norm = mpl.colors.Normalize(vmin=min, vmax=max)
h = ax.imshow(im, norm=norm, cmap=cmap, **options)
# display the color bar
if colorbar is not False:
cbargs = {}
if ncolors:
cbargs["ticks"] = range(ncolors + 1)
if isinstance(colorbar, dict):
# passed options have priority
cbargs = {**cbargs, **colorbar}
cb = fig.colorbar(cm.ScalarMappable(norm=norm, cmap=cmap), ax=ax, **cbargs)
# set title of figure window
set_window_title(title)
# set title in figure plot:
# fig.suptitle(title) # slightly different positioning
# ax.set_title(title)
# hide image axes - by default also removes frame
# back with ax.spines['top'].set_visible(True) ?
if not axes:
ax.axis("off")
if extent is None:
ax.set_xlabel("u (pixels)")
ax.set_ylabel("v (pixels)")
if grid is not False:
# if grid is True:
# ax.grid(True)
# elif isinstance(grid, str):
ax.grid(color="y", alpha=0.5, linewidth=0.5)
# no frame:
if not frame:
# NOTE: for frame tweaking, see matplotlib.spines
# https://matplotlib.org/3.3.2/api/spines_api.html
# note: can set spines linewidth:
# ax.spines['top'].set_linewidth(2.0)
ax.spines["top"].set_visible(False)
ax.spines["bottom"].set_visible(False)
ax.spines["left"].set_visible(False)
ax.spines["right"].set_visible(False)
if savefigname is not None:
# TODO check valid savefigname
# set default save file format
mpl.rcParams["savefig.format"] = "eps"
plt.draw()
# savefig must be called before plt.show
# after plt.show(), a new fig is automatically created
plt.savefig(savefigname)
# format the pixel value display
def format_coord(u, v):
u = int(u + 0.5)
v = int(v + 0.5)
try:
if im.ndim == 2:
# monochrome image
x = im[v, u]
if isinstance(x, np.integer):
val = f"{x:d}"
elif isinstance(x, np.floating):
val = f"{x:.3f}"
elif isinstance(x, (np.bool_, bool)):
val = f"{x}"
else:
print(f"unknown pixel type {type(x)}")
return f"({u}, {v}): {val} {x.dtype}"
else:
# color image
x = im[v, u, :] # in RGB order
if colororder == "BGR":
x = x[::-1]
if np.issubdtype(x.dtype, np.integer):
val = [f"{_:d}" for _ in x]
elif np.issubdtype(x.dtype, np.floating):
val = [f"{_:.3f}" for _ in x]
val = "[" + ", ".join(val) + "]"
return f"({u}, {v}): {val} {colororder}, {x.dtype}"
except IndexError:
return ""
if coordformat is None:
ax.format_coord = format_coord
else:
ax.format_coord = coordformat
# don't display data
h.format_cursor_data = lambda x: ""
if fps is not None:
# print("pausing", 1.0 / fps)
plt.pause(1.0 / fps)
if block is not None:
plt.show(block=block)
return h
else:
## display using OpenCV
global __last_window_number
if not reuse and title is None:
# create a unique window name for each call
title = "idisp." + str(__last_window_number)
__last_window_number += 1
cv.namedWindow(title, cv.WINDOW_AUTOSIZE)
cv.imshow(title, im) # make sure BGR format image
cv.waitKey(1)
if fps is not None:
# wait one frame time
cv.waitKey(round(1000.0 / fps))
if block is True:
while True:
k = cv.waitKey(delay=0) # wait forever for keystroke
if k == ord("q"):
cv.destroyWindow(title)
cv.waitKey(1)
break
# TODO fig, ax equivalent for OpenCV? how to print/plot to the same
# window/set of axes?
def set_window_title(title):
try:
plt.gcf().canvas.manager.set_window_title(title) # for 3.4 onward
except:
pass
def cv_destroy_window(title=None, block=True):
if title == "all":
cv.destroyAllWindows()
else:
if block:
while True:
k = cv.waitKey(delay=0) # wait forever for keystroke
if k == ord("q"):
break
cv.destroyWindow(title)
cv.waitKey(1) # run the event loop
def _isnotebook():
"""
Determine if code is being run from a Jupyter notebook
``_isnotebook`` is True if running Jupyter notebook, else False
:references:
- https://stackoverflow.com/questions/15411967/how-can-i-check-if-code-
is-executed-in-the-ipython-notebook/39662359#39662359
"""
try:
shell = get_ipython().__class__.__name__
if shell in ("Shell", "ZMQInteractiveShell"):
return True # Jupyter notebook or qtconsole or CoLab
elif shell == "TerminalInteractiveShell":
return False # Terminal running IPython
else:
return False # Other type (?)
except NameError:
return False # Probably standard Python interpreter
[docs]
def iread(filename, *args, **kwargs):
r"""
Read image from file or URL
:param filename: file name or URL
:type filename: str
:param kwargs: key word arguments passed to :func:`convert`
:return: image and filename
:rtype: tuple (ndarray, str) or list of tuples, image is
a 2D or 3D NumPy ndarray
Loads an image from a file or URL, and returns the
image as a NumPy array, as well as the absolute path name.
If the path is not absolute it is first searched for relative
to the current directory, and if not found, it is searched for in
the ``images`` folder of the
```mvtb_data`` package <https://github.com/petercorke/machinevision-toolbox-python/tree/master/mvtb-data>`_.
If ``file`` is a list or contains a wildcard, the result will be a list of
``(image, path)`` tuples. They will be sorted by path.
The image can by greyscale or color in any of the wide range of formats
supported by the OpenCV ``imread`` function. Extra options can be passsed to
perform datatype conversion, color to grey scale conversion, gamma
correction, image decimation or region of interest windowing. Details are
given at :func:`convert`.
Example:
.. runblock:: pycon
>>> from machinevisiontoolbox import iread
>>> im, file = iread('flowers1.png')
>>> im.shape
>>> file[27:]
>>> imdata = iread('campus/*.png')
>>> len(imdata)
>>> imdata[0][0].shape
>>> imdata[1][0][27:]
.. note::
- A greyscale image is returned as an :math:`H \times W` array
- A color image is returned as an :math:`H \times W \times P` array,
typically :math:`P=3` for an RGB or BGR image or :math:`P=4` if there
is an alpha plane, eg. RGBA.
- wildcard lookup is done using pathlib ``Path.glob()`` and supports
recursive globbing with the ``**`` pattern.
:references:
- Robotics, Vision & Control for Python, Section 10.1, P. Corke, Springer 2023.
:seealso: :func:`convert` `cv2.imread <https://docs.opencv.org/4.x/d4/da8/group__imgcodecs.html#ga288b8b3da0892bd651fce07b3bbd3a56>`_
"""
if isinstance(filename, str) and (
filename.startswith("http://") or filename.startswith("https://")
):
# reading from a URL
resp = urllib.request.urlopen(filename)
array = np.asarray(bytearray(resp.read()), dtype="uint8")
image = cv.imdecode(array, -1)
image = convert(image, **kwargs)
return (image, filename)
elif isinstance(filename, (str, Path)):
# reading from a file
path = Path(filename).expanduser()
if any([c in "?*" for c in str(path)]):
# contains wildcard characters, glob it
# recurse and return a list
# https://stackoverflow.com/questions/51108256/how-to-take-a-pathname-string-with-wildcards-and-resolve-the-glob-with-pathlib
parts = path.parts[1:] if path.is_absolute() else path.parts
p = Path(path.root).glob(str(Path("").joinpath(*parts)))
pathlist = list(p)
if len(pathlist) == 0 and not path.is_absolute():
# look in the toolbox image folder
parts = path.parts
path = mvtb_path_to_datafile("images", Path("").joinpath(*parts[:-1]))
pathlist = list(path.glob(parts[-1]))
if len(pathlist) == 0:
raise ValueError("can't expand wildcard")
# convert to strings
pathlist = [str(p) for p in pathlist]
images = []
pathlist.sort()
for p in pathlist:
image = cv.imread(p, -1) # default read-in as BGR
images.append(convert(image, **kwargs))
return images, pathlist
else:
# read single file
path = mvtb_path_to_datafile("images", path)
# read the image
# TODO not sure the following will work on Windows
image = cv.imread(path.as_posix(), -1) # default read-in as BGR
if image is None:
# TODO check ValueError
raise ValueError(f"Could not read {filename}")
image = convert(image, **kwargs)
return (image, str(path))
else:
raise ValueError(filename, "invalid filename")
[docs]
def convert(
image,
mono=False,
gray=False,
grey=False,
rgb=True,
dtype=None,
gamma=None,
alpha=False,
reduce=None,
roi=None,
maxintval=None,
copy=False,
):
"""
Convert image
:param image: input image
:type image: ndarray(H,W), ndarray(H,W,P)
:param grey: convert to grey scale, default False
:type grey: bool or 'ITU601' [default] or 'ITU709'
:param gray: synonym for ``grey``
:param dtype: a NumPy dtype string such as ``"uint8"``, ``"int16"``, ``"float32"`` or
a NumPy type like ``np.uint8``.
:type dtype: str
:param rgb: force color image to RGB order, otherwise BGR
:type rgb: bool, optional
:param gamma: gamma decoding, either the exponent of "sRGB"
:type gamma: float or str
:param alpha: allow alpha plane, default False
:type alpha: bool
:param reduce: subsample image by this amount in u- and v-dimensions
:type reduce: int
:param roi: region of interest: [umin, umax, vmin, vmax]
:type roi: array_like(4)
:param maxintval: maximum integer value to be used for scaling
:type maxintval: int
:param copy: guarantee that returned image is a copy of the input image, defaults to False
:type copy: bool
:return: converted image
:rtype: ndarray(H,W) or ndarray(H,W,N)
Peform common image conversion and transformations for NumPy images.
``dtype`` controls the resulting pixel data type. If the image is a floating
type the pixels are assumed to be in the range [0, 1] and are scaled into
the range [0, ``maxintval``]. If ``maxintval`` is not given it is taken
as the maximum value of ``dtype``.
Gamma decoding specified by ``gamma`` can be applied to float or int
type images.
The ``grey``/``gray`` option converts a color image to greyscale and is ignored if the
image is already greyscale. Note that this conversions requires knowledge of the color
plane order specified by ``colororder``. The planes are inverted by ``invertplanes`` before
this step.
"""
if grey:
warnings.warn(
"grey option to Image.Read/iread is deprecated, use mono instead",
DeprecationWarning,
)
if gray:
warnings.warn(
"gray option to Image.Read/iread is deprecated, use mono instead",
DeprecationWarning,
)
image_original = image
if image.ndim == 3 and image.shape[2] in (3, 4):
# is color image RGB, RGBA, BGR, BGRA
if not alpha:
# optionally remove the alpha plane
image = image[:, :, :3]
if rgb:
# optionally invert the color planes
image = np.copy(image[:, :, ::-1]) # reverse the planes
# np.copy() is required to make torchvision happy
colororder = "RGB"
else:
colororder = "BGR"
mono = mono or gray or grey
if mono and len(image.shape) == 3:
image = colorspace_convert(image, colororder, "grey")
dtype_alias = {
"int": "uint8",
"float": "float32",
"double": "float64",
"half": "float16",
}
if dtype is not None:
# default types
try:
dtype = dtype_alias[dtype]
except KeyError:
pass
if "int" in dtype:
image = int_image(image, intclass=dtype, maxintval=maxintval)
elif "float" in dtype:
image = float_image(image, floatclass=dtype, maxintval=maxintval)
else:
raise ValueError(f"unknown dtype: {dtype}")
if reduce is not None:
n = int(reduce)
if len(image.shape) == 2:
image = image[::n, ::n]
else:
image = image[::n, ::n, :]
if roi is not None:
umin, umax, vmin, vmax = roi
if len(image.shape) == 2:
image = image[vmin:vmax, umin:umax]
else:
image = image[vmin:vmax, umin:umax, :]
if gamma is not None:
image = gamma_decode(image, gamma)
if image is not image_original and copy:
image = image.copy()
return image
[docs]
def iwrite(im, filename, colororder="RGB", **kwargs):
"""
Write NumPy array to an image file
:param filename: filename to write to
:type filename: string
:param colororder: color order, defaults to "RGB"
:type colororder: str
:param kwargs: additional arguments, see ImwriteFlags
:return: successful write
:rtype: bool
Writes the image ``im`` to ``filename`` using cv.imwrite(), with **kwargs
passed as options. The file type is taken from the extension in
``filename``.
Example::
>>> from machinevisiontoolbox import iwrite
>>> import numpy as np
>>> image = np.zeros((20,20)) # 20x20 black image
>>> iwrite(image, "black.png")
.. note::
- supports 8-bit greyscale and color images
- supports uint16 for PNG, JPEG 2000, and TIFF formats
- supports float32
- image must be in BGR or RGB format
:seealso: :func:`iread` `cv2.imwrite <https://docs.opencv.org/4.x/d4/da8/group__imgcodecs.html#gabbc7ef1aa2edfaa87772f1202d67e0ce>`_
"""
if im.ndim > 2 and colororder == "RGB":
# put image into OpenCV BGR order for writing
return cv.imwrite(filename, im[:, :, ::-1], **kwargs)
else:
return cv.imwrite(filename, im, **kwargs)
[docs]
def pickpoints(self, n=None, matplotlib=True):
"""
Pick points on image
:param n: number of points to input, defaults to infinite number
:type n: int, optional
:param matplotlib: plot using Matplotlib (True) or OpenCV (False), defaults to True
:type matplotlib: bool, optional
:return: Picked points, one per column
:rtype: ndarray(2,n)
Allow the user to select points on the displayed image.
For Matplotlib, a marker is displayed at each point selected with a
left-click. Points can be removed by a right-click, like an undo function.
middle-click or Enter-key will terminate the entry process. If ``n`` is
given, the entry process terminates after ``n`` points are entered, but can
terminated prematurely as above.
.. note:: Picked coordinates have floating point values.
:seealso: :func:`idisp`
"""
if matplotlib:
points = plt.ginput(n)
return np.c_[points].T
else:
def click_event(event, x, y, flags, params):
# checking for left mouse clicks
if event == cv2.EVENT_LBUTTONDOWN:
# displaying the coordinates
# on the Shell
print(x, " ", y)
cv.setMouseCallback("image", click_event)
# wait for a key to be pressed to exit
cv.waitKey(0)
if __name__ == "__main__":
from machinevisiontoolbox import *
from machinevisiontoolbox.base import *
images = ImageCollection("seq/*.png")
im, file = iread("street.png", dtype="float")
idisp(im, matplotlib=False)
idisp(im, matplotlib=False)
for image in images:
image.disp(
title="sequence", reuse=True, fps=5, matplotlib=False
) # do some operation
# type 'q' in the image animation window to close it
cv_destroy_window("sequence", block=True)
# filename = "~/code/machinevision-toolbox-python/machinevisiontoolbox/images/campus/*.png"
# im = iread(filename)
# print(im[0])
# from machinevisiontoolbox import VideoCamera, Image
# from machinevisiontoolbox.base import idisp
# import numpy as np
# c = VideoCamera(0, rgb=False)
# x = c.grab()
# x.disp(block=True)
# x.disp(block=True)
# idisp(x.image, colororder="BGR", block=True)
# a = np.eye(2)
# b = np.dstack([a, a*0, a*0])
# # idisp(b)
# # idisp(b, colororder="RGB", title="RGB")
# # idisp(b, colororder="BGR", title="BGR", block=True)
# x = Image(b)
# y = Image(b, colororder="BGR")
# x.disp()
# y.disp(block=True)
# im = np.zeros((4,4))
# im[:,0] = 0.2
# im[:,3] = -0.4
# idisp(im, colormap='signed', block=True)
# for i in range(100):
# im[:,i] = i - 40
# idisp(im, matplotlib=True, title='default')
# idisp(im, matplotlib=True, colormap='random', title='random')
# idisp(im, matplotlib=True, colormap='grey', darken=4, title='dark')
# idisp(im, matplotlib=True, colormap='signed', title='signed')
# idisp(im, matplotlib=True, colormap='invsigned', title='invsigned')
# idisp(im, matplotlib=True, colormap='grey', ncolors=4, title='solarize')
# idisp(im, matplotlib=True, block=True, colormap='invert', title='grey')
# for i in range(50):
# im[:,i] = 10
# idisp(im, matplotlib=True, block=False, colormap='grey', black=5, title='black=5')
# idisp(im, matplotlib=True, block=False, colormap='grey', ynormal=True, title='grey')
# idisp(im, matplotlib=True, block=False, colormap='grey', xydata=np.r_[10,20,30,40], title='grey')
# idisp(im, matplotlib=True, block=True, colormap='grey', ynormal=True, title='grey')
# im, file = iread("street.png", dtype="float")
# idisp(im, title="Boo!", block=True)