Source code for machinevisiontoolbox.base.meshgrid

import numpy as np


[docs] def meshgrid(width, height): """ Coordinate arrays for an image :param width: image width in pixels :type width: int :param height: image height in pixels :type height: int :return: coordinate arrays :rtype: ndarray(H,W), ndarray(H,W) Returns arrays ``U`` and ``V`` such that ``U[u,v] = u`` and ``V[u,v] = v``. This can be used to define a 2D-function, for example: .. runblock:: pycon >>> from machinevisiontoolbox import meshgrid >>> U, V = meshgrid(3, 4) >>> U >>> V >>> Z = U**2 + V**2 # z=u^2 + v^2 >>> Z :seealso: :func:`Image.warp` :func:`~numpy.meshgrid` """ u = np.arange(width) v = np.arange(height) return np.meshgrid(u, v) # , indexing='ij')
[docs] def spherical_rotate(Phi, Theta, R): r""" Rotate coordinate matrices for a spherical image :param Phi: coordinate array for azimuth :type Phi: ndarray(H,W) :param Theta: coordinate array for colatitude :type Theta: ndarray(H,W) :param R: an SO(3) rotation matrix :type R: :class:`spatialmath.pose3d.SO3` :return: transformed coordinate arrays :rtype: ndarray(H,W), ndarray(H,W) The coordinates of points in a spherical image can be represented by a pair of coordinate matrices that describe azimuth :math:`\phi \in [0, 2\pi]` and colatitude :math:`\theta \in [0, \pi]` for each pixel: ``Phi[u,v]`` :math:`=\phi_{u,v}`, ``Theta[u,v]`` :math:`=\theta_{u,v}`. This function rotates the spherical image about its centre by transforming the coordinate arrays .. math:: \begin{pmatrix} \phi^\prime_{u,v} \\ \theta^\prime_{u,v} \end{pmatrix} = \mat{R} \begin{pmatrix} \phi_{u,v} \\ \theta_{u,v} \end{pmatrix}, \forall u, v :seealso: :class:`spatialmath.pose3d.SO3` """ # convert the spherical coordinates to Cartesian x = np.sin(Theta) * np.cos(Phi) y = np.sin(Theta) * np.sin(Phi) z = np.cos(Theta) # convert to 3xN format p = np.array([x.ravel(), y.ravel(), z.ravel()]) # transform the points p = R * p # convert back to Cartesian coordinate matrices x = p[0, :].reshape(x.shape) y = p[1, :].reshape(x.shape) z = p[2, :].reshape(x.shape) nTheta = np.arccos(z) nPhi = np.arctan2(y, x) return nPhi, nTheta