Source code for roboticstoolbox.backends.PyPlot.PyPlot

#!/usr/bin/env python
"""
@author Jesse Haviland
"""
import time
import roboticstoolbox as rp
import numpy as np
from roboticstoolbox.backends.Connector import Connector

from roboticstoolbox.backends.PyPlot.RobotPlot import RobotPlot
from roboticstoolbox.backends.PyPlot.EllipsePlot import EllipsePlot, ShapePlot
from spatialmath.base.argcheck import getvector
from spatialgeometry import Shape

# from roboticstoolbox.tools import Ticker

_mpl = False
_pil = None

try:
    import matplotlib
    import matplotlib.pyplot as plt

    # from mpl_toolkits.mplot3d import Axes3D
    from matplotlib.widgets import Slider

    matplotlib.rcParams["pdf.fonttype"] = 42
    matplotlib.rcParams["ps.fonttype"] = 42
    plt.style.use("ggplot")
    matplotlib.rcParams["font.size"] = 7
    matplotlib.rcParams["lines.linewidth"] = 0.5
    matplotlib.rcParams["xtick.major.size"] = 1.5
    matplotlib.rcParams["ytick.major.size"] = 1.5
    matplotlib.rcParams["axes.labelpad"] = 1
    plt.rc("grid", linestyle="-", color="#dbdbdb")
    _mpl = True
except ImportError:  # pragma nocover
    pass


[docs]class PyPlot(Connector): """ Graphical backend using matplotlib matplotlib is a common and highly portable graphics library for Python, but has relatively limited 3D capability. Example: .. code-block:: python :linenos: import roboticstoolbox as rtb robot = rtb.models.DH.Panda() # create a robot pyplot = rtb.backends.PyPlot() # create a PyPlot backend pyplot.add(robot) # add the robot to the backend robot.q = robot.qz # set the robot configuration pyplot.step() # update the backend and graphical view .. note:: PyPlot is the default backend, and ``robot.plot(q)`` effectively performs lines 7-8 above. """ def __init__(self): super(PyPlot, self).__init__() self.robots = [] self.ellipses = [] self.shapes = [] if not _mpl: # pragma nocover raise ImportError( "\n\nYou do not have matplotlib installed, do:\n" "pip install matplotlib\n\n" ) def __repr__(self): s = "" for robot in self.robots: s += f" robot: {robot.name}\n" for ellipse in self.ellipses: s += f" ellipse: {ellipse}\n" for shape in self.shapes: s += f" shape: {shape}\n" if s == "": return f"PyPlot3D backend, t = {self.sim_time}, empty scene" else: return f"PyPlot3D backend, t = {self.sim_time}, scene:\n" + s
[docs] def launch(self, name=None, fig=None, limits=None, **kwargs): """ Launch a graphical interface ```env = launch()``` creates a blank 3D matplotlib figure and returns a reference to the backend. """ super().launch() self.limits = limits if limits is not None: self.limits = getvector(limits, 6) projection = "ortho" labels = ["X", "Y", "Z"] if name is None: name = "Robotics Toolbox for Python" if fig is None: self.fig = plt.figure(name) else: self.fig = fig self.fig.canvas.manager.set_window_title(name) self.fig.subplots_adjust(left=-0.09, bottom=0, top=1, right=0.99) # Create a 3D axes self.ax = self.fig.add_subplot(111, projection="3d", proj_type=projection) self.ax.set_facecolor("white") self.ax.figure.canvas.manager.set_window_title( f"Robotics Toolbox for Python (Figure {self.ax.figure.number})" ) self.ax.set_xbound(-0.5, 0.5) self.ax.set_ybound(-0.5, 0.5) self.ax.set_zbound(0.0, 0.5) self.ax.set_xlabel(labels[0]) self.ax.set_ylabel(labels[1]) self.ax.set_zlabel(labels[2]) if limits is not None: self.ax.set_xlim3d([limits[0], limits[1]]) self.ax.set_ylim3d([limits[2], limits[3]]) self.ax.set_zlim3d([limits[4], limits[5]]) self.limits = limits # disable the display of value under cursor # self.ax.format_coord = lambda x, y: '' # add time display in top-right corner self.timer = plt.figtext(0.85, 0.95, "") if _isnotebook(): plt.ion() self.fig.canvas.draw() else: plt.ion() plt.show() self.sim_time = 0
# # Set the signal handler and a 0.1 second plot updater # signal.signal(signal.SIGALRM, self._plot_handler) # signal.setitimer(signal.ITIMER_REAL, 0.1, 0.1) # TODO still need to finish this, and get Jupyter animation working
[docs] def step(self, dt=0.05): """ Update the graphical scene :param dt: time step in seconds, defaults to 50 (0.05 s) :type dt: int, optional ``env.step(args)`` triggers an update of the 3D scene in the matplotlib window referenced by ``env``. .. note:: - Each robot in the scene is updated based on their control type (position, velocity, acceleration, or torque). - Upon acting, the other three of the four control types will be updated in the internal state of the robot object. - The control type is defined by the robot object, and not all robot objects support all control types. - Execution is blocked for the specified interval """ super().step() # update the robot's state for rpl in self.robots: robot = rpl.robot if rpl.readonly or robot.control_mode == "p": pass # pragma: no cover elif robot.control_mode == "v": for i in range(robot.n): robot.q[i] += robot.qd[i] * (dt) elif robot.control_mode == "a": # pragma: no cover pass else: # pragma: no cover raise ValueError( "Invalid robot.control_type. Must be one of 'p', 'v', or 'a'" ) # plt.ioff() # update all ellipses for ellipse in self.ellipses: ellipse.draw() # update all shapes for shape in self.shapes: shape.draw() # update all robots for robot in self.robots: robot.draw() self._set_axes_equal() # update time and display it on plot if self.sim_time > 0: self.timer.set_text(f"t = {self.sim_time:.2f}") self.sim_time += dt # plt.ion() if _isnotebook(): plt.draw() self.fig.canvas.draw() time.sleep(dt) else: plt.draw() plt.pause(dt)
[docs] def reset(self): """ Reset the graphical scene ``env.reset()`` triggers a reset of the 3D scene in the matplotlib window referenced by ``env``. It is restored to the original state defined by ``launch()``. """ # TODO what does this actually do for matplotlib?? super().reset()
[docs] def restart(self): """ Restart the graphics display ``env.restart()`` triggers a restart of the matplotlib view referenced by ``env``. It is closed and relaunched to the original state defined by ``launch()``. """ # TODO what does this actually do for matplotlib?? super().restart()
[docs] def close(self): """ ``env.close()`` gracefully closes the matplotlib window referenced by ``env``. """ # TODO what does this actually do for matplotlib?? super().close() # signal.setitimer(signal.ITIMER_REAL, 0) plt.close(self.fig)
# # Methods to interface with the robots created in other environments #
[docs] def add( self, ob, readonly=False, display=True, jointaxes=True, jointlabels=False, eeframe=True, shadow=True, name=True, options=None, ): """ Add a robot to the graphical scene :param ob: The object to add to the plot (robot or ellipse) :type ob: DHRobot or EllipsePlot :param readonly: Do not update the state of the object (i.e. display not simulate), defaults to False :type readonly: bool, optional :param display: Display the object, defaults to True :type display: bool, optional :param jointaxes: Show the joint axes of the robot with arrows, defaults to True :type jointaxes: bool, optional :param eeframe: Show the end-effector frame of the robot, defaults to True :type eeframe: bool, optional :param shadow: Display a shadow of the robot on the x-y gound plane, defaults to True :type shadow: bool, optional :param name: Display the name of the robot, defaults to True :type name: bool, optional ``id = env.add(robot)`` adds the ``robot`` to the graphical environment. .. note:: - ``robot`` must be of an appropriate class. - Adds the robot object to a list of robots which will be updated when the ``step()`` method is called. """ super().add() if ( isinstance(ob, rp.DHRobot) or isinstance(ob, rp.ERobot) or isinstance(ob, rp.Robot) ): self.robots.append( RobotPlot( ob, self, readonly, display, jointaxes, jointlabels, eeframe, shadow, name, options, ) ) self.robots[-1].draw() id = len(self.robots) elif isinstance(ob, EllipsePlot): ob.ax = self.ax self.ellipses.append(ob) self.ellipses[-1].draw() id = len(self.ellipses) elif isinstance(ob, Shape): # recreate the shape using matplotlib self.shapes.append(ShapePlot(ob)) self.shapes[-1].draw(ax=self.ax) id = len(self.shapes) plt.draw() # matplotlib refresh plt.show(block=False) self._set_axes_equal() return id
[docs] def remove(self, id): """ Remove a robot or shape from the graphical scene :param id: The id of the robot to remove. Can be either the DHLink or GraphicalRobot :type id: class:`~roboticstoolbox.robot.DHRobot.DHRobot`, class:`roboticstoolbox.backends.VPython.graphics_robot.GraphicalRobot` :param fig_num: The canvas index to delete the robot from, defaults to the initial one :type fig_num: int, optional :raises ValueError: Figure number must be between 0 and total number of canvases :raises TypeError: Input must be a DHLink or GraphicalRobot ``env.remove(robot)`` removes the ``robot`` from the graphical environment. """ # TODO should be an id to remove? super().remove()
[docs] def hold(self): # pragma: no cover """ hold() keeps the plot open i.e. stops the plot from closing once the main script has finished. """ # signal.setitimer(signal.ITIMER_REAL, 0) plt.ioff() # keep stepping the environment while figure is open while True: if not plt.fignum_exists(self.fig.number): break self.step()
[docs] def getframe(self): global _pil if _pil is None: try: import PIL _pil = PIL.Image.frombytes except ImportError: # pragma nocover pass if _pil is None: raise RuntimeError( "to save movies PIL must be installed:\npip3 install PIL" ) # make the background white, looks better than grey stipple self.ax.w_xaxis.set_pane_color((1.0, 1.0, 1.0, 1.0)) self.ax.w_yaxis.set_pane_color((1.0, 1.0, 1.0, 1.0)) self.ax.w_zaxis.set_pane_color((1.0, 1.0, 1.0, 1.0)) plt.gcf().canvas.draw() # render the frame and save as a PIL image in the list canvas = self.fig.canvas return _pil("RGB", canvas.get_width_height(), canvas.tostring_rgb())
# # Private methods # # def _plot_handler(self, sig, frame): # try: # plt.pause(0.001) # except(AttributeError): # pass def _set_axes_equal(self): """ Make axes of 3D plot have equal scale so that spheres appear as spheres, cubes as cubes, etc.. This is one possible solution to Matplotlib's ax.set_aspect('equal') and ax.axis('equal') not working for 3D. """ if self.limits is not None: return self.ax.autoscale(enable=True, axis="both", tight=False) x_limits = self.ax.get_xlim3d() y_limits = self.ax.get_ylim3d() z_limits = self.ax.get_zlim3d() x_range = abs(x_limits[1] - x_limits[0]) x_middle = np.mean(x_limits) y_range = abs(y_limits[1] - y_limits[0]) y_middle = np.mean(y_limits) z_range = abs(z_limits[1] - z_limits[0]) z_middle = np.mean(z_limits) # The plot bounding box is a sphere in the sense of the infinity # norm, hence I call half the max range the plot radius. plot_radius = 0.5 * max([x_range, y_range, z_range]) self.ax.set_xlim3d([x_middle - plot_radius, x_middle + plot_radius]) self.ax.set_ylim3d([y_middle - plot_radius, y_middle + plot_radius]) self.ax.set_zlim3d([z_middle - plot_radius, z_middle + plot_radius]) def _add_teach_panel(self, robot, q): if _isnotebook(): raise RuntimeError("cannot use teach panel under Jupyter") fig = self.fig # Add text to the plots def text_trans(text, q): # pragma: no cover T = robot.fkine(q) t = np.round(T.t, 3) r = np.round(T.rpy("deg"), 3) text[0].set_text("x: {0}".format(t[0])) text[1].set_text("y: {0}".format(t[1])) text[2].set_text("z: {0}".format(t[2])) text[3].set_text("r: {0}".format(r[0])) text[4].set_text("p: {0}".format(r[1])) text[5].set_text("y: {0}".format(r[2])) # Update the self state in mpl and the text def update(val, text, robot): # pragma: no cover for j in range(robot.n): if robot.isrevolute(j): robot.q[j] = np.radians(self.sjoint[j].val) else: robot.q[j] = self.sjoint[j].val text_trans(text, robot.q) fig.subplots_adjust(left=0.25) text = [] x1 = 0.04 x2 = 0.22 yh = 0.04 ym = 0.5 - (robot.n * yh) / 2 + 0.17 / 2 self.axjoint = [] self.sjoint = [] qlim = robot.todegrees(robot.qlim) # if np.all(qlim == 0): # pragma: no cover # qlim[0, :] = -180 # qlim[1, :] = 180 # Set the pose text T = robot.fkine(q) t = np.round(T.t, 3) r = np.round(T.rpy(), 3) fig.text( 0.02, 1 - ym + 0.25, "End-effector Pose", fontsize=9, weight="bold", color="#4f4f4f", ) text.append( fig.text( 0.03, 1 - ym + 0.20, "x: {0}".format(t[0]), fontsize=9, color="#2b2b2b" ) ) text.append( fig.text( 0.03, 1 - ym + 0.16, "y: {0}".format(t[1]), fontsize=9, color="#2b2b2b" ) ) text.append( fig.text( 0.03, 1 - ym + 0.12, "z: {0}".format(t[2]), fontsize=9, color="#2b2b2b" ) ) text.append( fig.text( 0.15, 1 - ym + 0.20, "r: {0}".format(r[0]), fontsize=9, color="#2b2b2b" ) ) text.append( fig.text( 0.15, 1 - ym + 0.16, "p: {0}".format(r[1]), fontsize=9, color="#2b2b2b" ) ) text.append( fig.text( 0.15, 1 - ym + 0.12, "y: {0}".format(r[2]), fontsize=9, color="#2b2b2b" ) ) fig.text( 0.02, 1 - ym + 0.06, "Joint angles", fontsize=9, weight="bold", color="#4f4f4f", ) for j in range(robot.n): ymin = (1 - ym) - j * yh ax = fig.add_axes([x1, ymin, x2, 0.03], facecolor="#dbdbdb") self.axjoint.append(ax) if robot.isrevolute(j): slider = Slider( ax, "q" + str(j), qlim[0, j], qlim[1, j], np.degrees(q[j]), "% .1f°" ) else: slider = Slider( ax, "q" + str(j), qlim[0, j], qlim[1, j], robot.q[j], "% .1f" ) slider.on_changed(lambda x: update(x, text, robot)) self.sjoint.append(slider) robot.q = q self.step()
def _isnotebook(): """ Determine if code is being run from a Jupyter notebook ``_isnotebook`` is True if running Jupyter notebook, else False :references: - https://stackoverflow.com/questions/15411967/how-can-i-check-if-code- is-executed-in-the-ipython-notebook/39662359#39662359 """ try: shell = get_ipython().__class__.__name__ if shell == "ZMQInteractiveShell": return True # Jupyter notebook or qtconsole elif shell == "TerminalInteractiveShell": return False # Terminal running IPython else: return False # Other type (?) except NameError: return False # Probably standard Python interpreter