Source code for roboticstoolbox.mobile.QuinticPolyPlanner

import math
from collections import namedtuple

import matplotlib.pyplot as plt
import numpy as np
from roboticstoolbox.mobile.PlannerBase import PlannerBase

# parameter


show_animation = True

# ======================================================================== #

# The following code is modified from Python Robotics
# https://github.com/AtsushiSakai/PythonRobotics/tree/master/PathPlanning
# Quintic Polynomial Planner
# Author: Atsushi Sakai
# Copyright (c) 2016 - 2022 Atsushi Sakai and other contributors: https://github.com/AtsushiSakai/PythonRobotics/contributors
# Released under the MIT license: https://github.com/AtsushiSakai/PythonRobotics/blob/master/LICENSE


class _QuinticPolynomial:
    def __init__(self, xs, vxs, axs, xe, vxe, axe, time):
        # calc coefficient of quintic polynomial
        # See jupyter notebook document for derivation of this equation.
        self.a0 = xs
        self.a1 = vxs
        self.a2 = axs / 2.0

        A = np.array(
            [
                [time**3, time**4, time**5],
                [3 * time**2, 4 * time**3, 5 * time**4],
                [6 * time, 12 * time**2, 20 * time**3],
            ]
        )
        b = np.array(
            [
                xe - self.a0 - self.a1 * time - self.a2 * time**2,
                vxe - self.a1 - 2 * self.a2 * time,
                axe - 2 * self.a2,
            ]
        )
        x = np.linalg.solve(A, b)

        self.a3 = x[0]
        self.a4 = x[1]
        self.a5 = x[2]

    def calc_point(self, t):
        xt = (
            self.a0
            + self.a1 * t
            + self.a2 * t**2
            + self.a3 * t**3
            + self.a4 * t**4
            + self.a5 * t**5
        )

        return xt

    def calc_first_derivative(self, t):
        xt = (
            self.a1
            + 2 * self.a2 * t
            + 3 * self.a3 * t**2
            + 4 * self.a4 * t**3
            + 5 * self.a5 * t**4
        )

        return xt

    def calc_second_derivative(self, t):
        xt = (
            2 * self.a2
            + 6 * self.a3 * t
            + 12 * self.a4 * t**2
            + 20 * self.a5 * t**3
        )

        return xt

    def calc_third_derivative(self, t):
        xt = 6 * self.a3 + 24 * self.a4 * t + 60 * self.a5 * t**2

        return xt


def quintic_polynomials_planner(
    sx, sy, syaw, sv, sa, gx, gy, gyaw, gv, ga, max_accel, max_jerk, dt, MIN_T, MAX_T
):
    """
    quintic polynomial planner

    input
        s_x: start x position [m]
        s_y: start y position [m]
        s_yaw: start yaw angle [rad]
        sa: start accel [m/ss]
        gx: goal x position [m]
        gy: goal y position [m]
        gyaw: goal yaw angle [rad]
        ga: goal accel [m/ss]
        max_accel: maximum accel [m/ss]
        max_jerk: maximum jerk [m/sss]
        dt: time tick [s]

    return
        time: time result
        rx: x position result list
        ry: y position result list
        ryaw: yaw angle result list
        rv: velocity result list
        ra: accel result list

    """

    vxs = sv * math.cos(syaw)
    vys = sv * math.sin(syaw)
    vxg = gv * math.cos(gyaw)
    vyg = gv * math.sin(gyaw)

    axs = sa * math.cos(syaw)
    ays = sa * math.sin(syaw)
    axg = ga * math.cos(gyaw)
    ayg = ga * math.sin(gyaw)

    time, rx, ry, ryaw, rv, ra, rj = [], [], [], [], [], [], []

    for T in np.arange(MIN_T, MAX_T, MIN_T):
        xqp = _QuinticPolynomial(sx, vxs, axs, gx, vxg, axg, T)
        yqp = _QuinticPolynomial(sy, vys, ays, gy, vyg, ayg, T)

        time, rx, ry, ryaw, rv, ra, rj = [], [], [], [], [], [], []

        for t in np.arange(0.0, T + dt, dt):
            time.append(t)
            rx.append(xqp.calc_point(t))
            ry.append(yqp.calc_point(t))

            vx = xqp.calc_first_derivative(t)
            vy = yqp.calc_first_derivative(t)
            v = np.hypot(vx, vy)
            yaw = math.atan2(vy, vx)
            rv.append(v)
            ryaw.append(yaw)

            ax = xqp.calc_second_derivative(t)
            ay = yqp.calc_second_derivative(t)
            a = np.hypot(ax, ay)
            if len(rv) >= 2 and rv[-1] - rv[-2] < 0.0:
                a *= -1
            ra.append(a)

            jx = xqp.calc_third_derivative(t)
            jy = yqp.calc_third_derivative(t)
            j = np.hypot(jx, jy)
            if len(ra) >= 2 and ra[-1] - ra[-2] < 0.0:
                j *= -1
            rj.append(j)

        if (
            max([abs(i) for i in ra]) <= max_accel
            and max([abs(i) for i in rj]) <= max_jerk
        ):
            print("find path!!")
            break

    return time, np.c_[rx, ry, ryaw], rv, ra, rj


# ====================== RTB wrapper ============================= #

# Copyright (c) 2022 Peter Corke: https://github.com/petercorke/robotics-toolbox-python
# Released under the MIT license: https://github.com/AtsushiSakai/PythonRobotics/blob/master/LICENSE
[docs]class QuinticPolyPlanner(PlannerBase): r""" Quintic polynomial path planner :param dt: time step, defaults to 0.1 :type dt: float, optional :param start_vel: initial velocity, defaults to 0 :type start_vel: float, optional :param start_acc: initial acceleration, defaults to 0 :type start_acc: float, optional :param goal_vel: goal velocity, defaults to 0 :type goal_vel: float, optional :param goal_acc: goal acceleration, defaults to 0 :type goal_acc: float, optional :param max_acc: maximum acceleration, defaults to 1 :type max_acc: int, optional :param max_jerk: maximum jerk, defaults to 0.5 :type min_t: float, optional :param min_t: minimum path time, defaults to 5 :type max_t: float, optional :param max_t: maximum path time, defaults to 100 :type max_jerk: float, optional :return: Quintic polynomial path planner :rtype: QuinticPolyPlanner instance ================== ======================== Feature Capability ================== ======================== Plan :math:`\SE{2}` Obstacle avoidance No Curvature Continuous Motion Forwards only ================== ======================== Creates a planner that finds the path between two configurations in the plane using forward motion only. The path is a continuous quintic polynomial for x and y .. math:: x(t) &= a_0 + a_1 t + a_2 t^2 + a_3 t^3 + a_4 t^4 + a_5 t^5 \\ y(t) &= b_0 + b_1 t + b_2 t^2 + b_3 t^3 + b_4 t^4 + b_5 t^5 that meets the given constraints. Trajectory time is given as a range. :reference: "Local Path Planning And Motion Control For AGV In Positioning", Takahashi, T. Hongo, Y. Ninomiya and G. Sugimoto; Proceedings. IEEE/RSJ International Workshop on Intelligent Robots and Systems (IROS '89) doi: 10.1109/IROS.1989.637936 .. note:: The path time is searched in the interval [``min_t``, ``max_t``] in steps of ``min_t``. Example: .. runblock:: pycon >>> from roboticstoolbox import QuinticPolyPlanner >>> import numpy as np >>> start = (10, 10, np.deg2rad(10.0)) >>> goal = (30, -10, np.deg2rad(20.0)) >>> quintic = QuinticPolyPlanner(start_vel=1) >>> path, status = quintic.query(start, goal) >>> print(path[:5,:]) :thanks: based on quintic polynomial planning from `Python Robotics <https://github.com/AtsushiSakai/PythonRobotics/tree/master/PathPlanning>`_ :seealso: :class:`Planner` """ def __init__( self, dt=0.1, start_vel=0, start_acc=0, goal_vel=0, goal_acc=0, max_acc=1, max_jerk=0.5, min_t=5, max_t=100, ): super().__init__(ndims=3) self.dt = dt self.start_vel = start_vel self.start_acc = start_acc self.goal_vel = goal_vel self.goal_acc = goal_acc self.max_acc = max_acc self.max_jerk = max_jerk self.min_t = min_t self.max_t = max_t
[docs] def query(self, start, goal): r""" Find a quintic polynomial path :param start: start configuration :math:`(x, y, \theta)` :type start: array_like(3), optional :param goal: goal configuration :math:`(x, y, \theta)` :type goal: array_like(3), optional :return: path and status :rtype: ndarray(N,3), namedtuple The returned status value has elements: ========== =================================================== Element Description ========== =================================================== ``t`` time to execute the path ``vel`` velocity profile along the path ``accel`` acceleration profile along the path ``jerk`` jerk profile along the path ========== =================================================== :seealso: :meth:`Planner.query` """ self._start = start self._goal = goal time, path, v, a, j = quintic_polynomials_planner( start[0], start[1], start[2], self.start_vel, self.start_acc, goal[0], goal[1], goal[2], self.start_vel, self.start_acc, self.max_acc, self.max_jerk, dt=self.dt, MIN_T=self.min_t, MAX_T=self.max_t, ) status = namedtuple("QuinticPolyStatus", ["t", "vel", "acc", "jerk"])( time, v, a, j ) return path, status
if __name__ == "__main__": from math import pi start = (10, 10, np.deg2rad(10.0)) goal = (30, -10, np.deg2rad(20.0)) quintic = QuinticPolyPlanner(start_vel=1) path, status = quintic.query(start, goal) print(status) quintic.plot(path) plt.figure() plt.subplot(311) plt.plot(status.t, status.vel, "-r") plt.ylabel("velocity (m/s)") plt.grid(True) plt.subplot(312) plt.plot(status.t, status.acc, "-r") plt.ylabel("accel (m/s2)") plt.grid(True) plt.subplot(313) plt.plot(status.t, status.jerk, "-r") plt.xlabel("Time (s)") plt.ylabel("jerk (m/s3)") plt.grid(True) plt.show(block=True)