Source code for roboticstoolbox.robot.IK

#!/usr/bin/env python

"""
@author Jesse Haviland
"""

import numpy as np
from abc import ABC, abstractmethod
from typing import Tuple, Union
import roboticstoolbox as rtb
from dataclasses import dataclass
from spatialmath import SE3
from roboticstoolbox.tools.types import ArrayLike

try:
    import qpsolvers as qp

    _qp = True
except ImportError:  # pragma nocover
    _qp = False


[docs]@dataclass class IKSolution: """ A dataclass for representing an IK solution Attributes ---------- q The joint coordinates of the solution (ndarray). Note that these will not be valid if failed to find a solution success True if a valid solution was found iterations How many iterations were performed searches How many searches were performed residual The final error value from the cost function reason The reason the IK problem failed if applicable .. versionchanged:: 1.0.3 Added IKSolution dataclass to replace the IKsolution named tuple """ q: np.ndarray success: bool iterations: int = 0 searches: int = 0 residual: float = 0.0 reason: str = "" def __iter__(self): return iter( ( self.q, self.success, self.iterations, self.searches, self.residual, self.reason, ) ) def __str__(self): if self.q is not None: q_str = np.array2string( self.q, separator=", ", formatter={ "float": lambda x: "{:.4g}".format(0 if abs(x) < 1e-6 else x) }, ) # np.round(self.q, 4) else: q_str = None if self.iterations == 0 and self.searches == 0: # Check for analytic if self.success: return f"IKSolution: q={q_str}, success=True" else: return f"IKSolution: q={q_str}, success=False, reason={self.reason}" else: # Otherwise it is a numeric solution if self.success: return ( f"IKSolution: q={q_str}, success=True," f" iterations={self.iterations}, searches={self.searches}," f" residual={self.residual:.3g}" ) else: return ( f"IKSolution: q={q_str}, success=False, reason={self.reason}," f" iterations={self.iterations}, searches={self.searches}," f" residual={np.round(self.residual, 4):.3g}" )
[docs]class IKSolver(ABC): """ An abstract super class for numerical inverse kinematics (IK) This class provides basic functionality to perform numerical IK. Superclasses can inherit this class and implement the `solve` method and redefine any other methods necessary. Parameters ---------- name The name of the IK algorithm ilimit How many iterations are allowed within a search before a new search is started slimit How many searches are allowed before being deemed unsuccessful tol Maximum allowed residual error E mask A 6 vector which assigns weights to Cartesian degrees-of-freedom error priority joint_limits Reject solutions with joint limit violations seed A seed for the private RNG used to generate random joint coordinate vectors See Also -------- IK_NR Implements this class using the Newton-Raphson method IK_GN Implements this class using the Gauss-Newton method IK_LM Implements this class using the Levemberg-Marquadt method IK_QP Implements this class using a quadratic programming approach .. versionchanged:: 1.0.3 Added the abstract super class IKSolver """
[docs] def __init__( self, name: str = "IK Solver", ilimit: int = 30, slimit: int = 100, tol: float = 1e-6, mask: Union[ArrayLike, None] = None, joint_limits: bool = True, seed: Union[int, None] = None, ): # Solver parameters self.name = name self.slimit = slimit self.ilimit = ilimit self.tol = tol # Random number generator self._private_random = np.random.default_rng(seed=seed) if mask is None: mask = np.ones(6) self.We = np.diag(mask) # type: ignore self.joint_limits = joint_limits
[docs] def solve( self, ets: "rtb.ETS", Tep: Union[SE3, np.ndarray], q0: Union[ArrayLike, None] = None, ) -> IKSolution: """ Solves the IK problem This method will attempt to solve the IK problem and obtain joint coordinates which result the the end-effector pose `Tep`. Parameters ---------- ets The ETS representing the manipulators kinematics Tep The desired end-effector pose q0 The initial joint coordinate vector Returns ------- q The joint coordinates of the solution (ndarray). Note that these will not be valid if failed to find a solution success True if a valid solution was found iterations How many iterations were performed searches How many searches were performed residual The final error value from the cost function jl_valid True if q is inbounds of the robots joint limits reason The reason the IK problem failed if applicable """ # Get the largest jindex in the ETS. If this is greater than ETS.n # then we need to pad the q vector with zeros max_jindex: int = 0 for j in ets.joints(): if j.jindex > max_jindex: # type: ignore max_jindex = j.jindex # type: ignore q0_method = np.zeros((self.slimit, max_jindex + 1)) if q0 is None: q0_method[:, ets.jindices] = self._random_q(ets, self.slimit) elif not isinstance(q0, np.ndarray): q0 = np.array(q0) if q0 is not None and q0.ndim == 1: q0_method[:, ets.jindices] = self._random_q(ets, self.slimit) q0_method[0, ets.jindices] = q0 if q0 is not None and q0.ndim == 2: q0_method[:, ets.jindices] = self._random_q(ets, self.slimit) q0_method[: q0.shape[0], ets.jindices] = q0 q0 = q0_method traj = False methTep: np.ndarray if isinstance(Tep, SE3): if len(Tep) > 1: traj = True methTep = np.empty((len(Tep), 4, 4)) for i, T in enumerate(Tep): methTep[i] = T.A else: methTep = Tep.A elif Tep.ndim == 3: traj = True methTep = Tep elif Tep.shape != (4, 4): raise ValueError("Tep must be a 4x4 SE3 matrix") else: methTep = Tep if traj: q = np.empty((methTep.shape[0], ets.n)) success = True interations = 0 searches = 0 residual = np.inf reason = "" for i, T in enumerate(methTep): sol = self._solve(ets, T, q0) q[i] = sol.q if not sol.success: success = False reason = sol.reason interations += sol.iterations searches += sol.searches if sol.residual < residual: residual = sol.residual return IKSolution( q=q, success=success, iterations=interations, searches=searches, residual=residual, reason=reason, ) else: sol = self._solve(ets, methTep, q0) return sol
def _solve(self, ets: "rtb.ETS", Tep: np.ndarray, q0: np.ndarray) -> IKSolution: # Iteration count i = 0 total_i = 0 # Error flags found_with_limits = False linalg_error = 0 # Initialise variables E = 0.0 q = q0[0] for search in range(self.slimit): q = q0[search].copy() i = 0 while i < self.ilimit: i += 1 # Attempt a step try: E, q[ets.jindices] = self.step(ets, Tep, q) except np.linalg.LinAlgError: # Abandon search and try again linalg_error += 1 break # Check if we have arrived if E < self.tol: # Wrap q to be within +- 180 deg # If your robot has larger than 180 deg range on a joint # this line should be modified in incorporate the extra range q = (q + np.pi) % (2 * np.pi) - np.pi # Check if we have violated joint limits jl_valid = self._check_jl(ets, q) if not jl_valid and self.joint_limits: # Abandon search and try again found_with_limits = True break else: return IKSolution( q=q[ets.jindices], success=True, iterations=total_i + i, searches=search + 1, residual=E, reason="Success", ) total_i += i # If we make it here, then we have failed reason = "iteration and search limit reached" if linalg_error: reason += f", {linalg_error} numpy.LinAlgError encountered" if found_with_limits: reason += ", solution found but violates joint limits" return IKSolution( q=q, success=False, iterations=total_i, searches=self.slimit, residual=E, reason=reason, )
[docs] def error(self, Te: np.ndarray, Tep: np.ndarray) -> Tuple[np.ndarray, float]: r""" Calculates the error between Te and Tep Calculates the engle axis error between current end-effector pose Te and the desired end-effector pose Tep. Also calulates the quadratic error E which is weighted by the diagonal matrix We. .. math:: E = \frac{1}{2} \vec{e}^{\top} \mat{W}_e \vec{e} where :math:`\vec{e} \in \mathbb{R}^6` is the angle-axis error. Parameters ---------- Te The current end-effector pose Tep The desired end-effector pose Returns ------- e angle-axis error (6 vector) E The quadratic error weighted by We """ e = rtb.angle_axis(Te, Tep) E = 0.5 * e @ self.We @ e return e, E
[docs] @abstractmethod def step( self, ets: "rtb.ETS", Tep: np.ndarray, q: np.ndarray ) -> Tuple[float, np.ndarray]: """ Abstract step method Superclasses will implement this method to perform a step of the implemented IK algorithm Parameters ---------- ets The ETS representing the manipulators kinematics Tep The desired end-effector pose q The current joint coordinate vector Raises ------ numpy.LinAlgError If a step is impossible due to a linear algebra error Returns ------- E The new error value q The new joint coordinate vector """ pass # pragma: nocover
[docs] def _random_q(self, ets: "rtb.ETS", i: int = 1) -> np.ndarray: """ Generate a random valid joint configuration using a private RNG Generates a random q vector within the joint limits defined by `ets.qlim`. Parameters ---------- ets The ETS representing the manipulators kinematics i number of configurations to generate Returns ------- q An `i x n` ndarray of random valid joint configurations, where n is the number of joints in the `ets` """ if i == 1: q = np.zeros((1, ets.n)) for i in range(ets.n): q[0, i] = self._private_random.uniform(ets.qlim[0, i], ets.qlim[1, i]) else: q = np.zeros((i, ets.n)) for j in range(i): for i in range(ets.n): q[j, i] = self._private_random.uniform( ets.qlim[0, i], ets.qlim[1, i] ) return q
[docs] def _check_jl(self, ets: "rtb.ETS", q: np.ndarray) -> bool: """ Checks if the joints are within their respective limits Parameters ---------- ets the ETS q the current joint coordinate vector Returns ------- True if joints within feasible limits otherwise False """ # Loop through the joints in the ETS for i in range(ets.n): # Get the corresponding joint limits ql0 = ets.qlim[0, i] ql1 = ets.qlim[1, i] # Check if q exceeds the limits if q[i] < ql0 or q[i] > ql1: return False # If we make it here, all the joints are fine return True
def _null_Σ(ets: "rtb.ETS", q: np.ndarray, ps: float, pi: Union[np.ndarray, float]): """ Formulates a relationship between joint limits and the joint velocity. When this is projected into the null-space of the differential kinematics to attempt to avoid exceeding joint limits :param q: The joint coordinates of the robot :param ps: The minimum angle/distance (in radians or metres) in which the joint is allowed to approach to its limit :param pi: The influence angle/distance (in radians or metres) in which the velocity damper becomes active :return: Σ """ if isinstance(pi, float): pi = pi * np.ones(ets.n) # Add cost to going in the direction of joint limits, if they are within # the influence distance Σ = np.zeros((ets.n, 1)) for i in range(ets.n): qi = q[i] ql0 = ets.qlim[0, i] ql1 = ets.qlim[1, i] if qi - ql0 <= pi[i]: Σ[i, 0] = -np.power(((qi - ql0) - pi[i]), 2) / np.power((ps - pi[i]), 2) if ql1 - qi <= pi[i]: Σ[i, 0] = np.power(((ql1 - qi) - pi[i]), 2) / np.power((ps - pi[i]), 2) return -Σ def _calc_qnull( ets: "rtb.ETS", q: np.ndarray, J: np.ndarray, λΣ: float, λm: float, ps: float, pi: Union[np.ndarray, float], ): """ Calculates the desired null-space motion according to the gains λΣ and λm. This is a helper method that is used within the `step` method of an IK solver :return: qnull - the desired null-space motion """ qnull_grad = np.zeros(ets.n) qnull = np.zeros(ets.n) # Add the joint limit avoidance if the gain is above 0 if λΣ > 0: Σ = _null_Σ(ets, q, ps, pi) qnull_grad += (1.0 / λΣ * Σ).flatten() # Add the manipulability maximisation if the gain is above 0 if λm > 0: Jm = ets.jacobm(q) qnull_grad += (1.0 / λm * Jm).flatten() # Calculate the null-space motion if λΣ > 0 or λΣ > 0: null_space = np.eye(ets.n) - np.linalg.pinv(J) @ J qnull = null_space @ qnull_grad return qnull.flatten()
[docs]class IK_NR(IKSolver): """ Newton-Raphson Numerical Inverse Kinematics Solver A class which provides functionality to perform numerical inverse kinematics (IK) using the Newton-Raphson method. See `step` method for mathematical description. Note ---- When using this class with redundant robots (>6 DoF), `pinv` must be set to `True` Parameters ---------- name The name of the IK algorithm ilimit How many iterations are allowed within a search before a new search is started slimit How many searches are allowed before being deemed unsuccessful tol Maximum allowed residual error E mask A 6 vector which assigns weights to Cartesian degrees-of-freedom error priority joint_limits Reject solutions with joint limit violations seed A seed for the private RNG used to generate random joint coordinate vectors pinv If True, will use the psuedoinverse in the `step` method instead of the normal inverse kq The gain for joint limit avoidance. Setting to 0.0 will remove this completely from the solution km The gain for maximisation. Setting to 0.0 will remove this completely from the solution ps The minimum angle/distance (in radians or metres) in which the joint is allowed to approach to its limit pi The influence angle/distance (in radians or metres) in null space motion becomes active Examples -------- The following example gets the ``ets`` of a ``panda`` robot object, instantiates the IK_NR solver class using default parameters, makes a goal pose ``Tep``, and then solves for the joint coordinates which result in the pose ``Tep`` using the ``solve`` method. .. runblock:: pycon >>> import roboticstoolbox as rtb >>> panda = rtb.models.Panda().ets() >>> solver = rtb.IK_NR(pinv=True) >>> Tep = panda.fkine([0, -0.3, 0, -2.2, 0, 2, 0.7854]) >>> solver.solve(panda, Tep) Notes ----- When using the NR method, the initial joint coordinates :math:`q_0`, should correspond to a non-singular manipulator pose, since it uses the manipulator Jacobian. When the the problem is solvable, it converges very quickly. However, this method frequently fails to converge on the goal. This class supports null-space motion to assist with maximising manipulability and avoiding joint limits. These are enabled by setting kq and km to non-zero values. References ---------- - J. Haviland, and P. Corke. "Manipulator Differential Kinematics Part I: Kinematics, Velocity, and Applications." arXiv preprint arXiv:2207.01796 (2022). - J. Haviland, and P. Corke. "Manipulator Differential Kinematics Part II: Acceleration and Advanced Applications." arXiv preprint arXiv:2207.01794 (2022). See Also -------- IKSolver An abstract super class for numerical IK solvers IK_GN Implements the IKSolver class using the Gauss-Newton method IK_LM Implements the IKSolver class using the Levemberg-Marquadt method IK_QP Implements the IKSolver class using a quadratic programming approach .. versionchanged:: 1.0.3 Added the Newton-Raphson IK solver class """ # noqa def __init__( self, name: str = "IK Solver", ilimit: int = 30, slimit: int = 100, tol: float = 1e-6, mask: Union[ArrayLike, None] = None, joint_limits: bool = True, seed: Union[int, None] = None, pinv: bool = False, kq: float = 0.0, km: float = 0.0, ps: float = 0.0, pi: Union[np.ndarray, float] = 0.3, **kwargs, ): super().__init__( name=name, ilimit=ilimit, slimit=slimit, tol=tol, mask=mask, joint_limits=joint_limits, seed=seed, **kwargs, ) self.pinv = pinv self.kq = kq self.km = km self.ps = ps self.pi = pi self.name = f"NR (pinv={pinv})" if self.kq > 0.0: self.name += " Σ" if self.km > 0.0: self.name += " Jm"
[docs] def step( self, ets: "rtb.ETS", Tep: np.ndarray, q: np.ndarray ) -> Tuple[float, np.ndarray]: r""" Performs a single iteration of the Newton-Raphson optimisation method .. math:: \vec{q}_{k+1} = \vec{q}_k + {^0\mat{J}(\vec{q}_k)}^{-1} \vec{e}_k Parameters ---------- ets The ETS representing the manipulators kinematics Tep The desired end-effector pose q The current joint coordinate vector Raises ------ numpy.LinAlgError If a step is impossible due to a linear algebra error Returns ------- E The new error value q The new joint coordinate vector """ Te = ets.eval(q) e, E = self.error(Te, Tep) J = ets.jacob0(q) # Null-space motion qnull = _calc_qnull( ets=ets, q=q, J=J, λΣ=self.kq, λm=self.km, ps=self.ps, pi=self.pi ) if self.pinv: q[ets.jindices] += np.linalg.pinv(J) @ e + qnull else: q[ets.jindices] += np.linalg.inv(J) @ e + qnull return E, q[ets.jindices]
[docs]class IK_LM(IKSolver): """ Levemberg-Marquadt Numerical Inverse Kinematics Solver A class which provides functionality to perform numerical inverse kinematics (IK) using the Levemberg-Marquadt method. See ``step`` method for mathematical description. Parameters ---------- name The name of the IK algorithm ilimit How many iterations are allowed within a search before a new search is started slimit How many searches are allowed before being deemed unsuccessful tol Maximum allowed residual error E mask A 6 vector which assigns weights to Cartesian degrees-of-freedom error priority joint_limits Reject solutions with joint limit violations seed A seed for the private RNG used to generate random joint coordinate vectors k Sets the gain value for the damping matrix Wn in the ``step`` method. See notes method One of "chan", "sugihara" or "wampler". Defines which method is used to calculate the damping matrix Wn in the ``step`` method kq The gain for joint limit avoidance. Setting to 0.0 will remove this completely from the solution km The gain for maximisation. Setting to 0.0 will remove this completely from the solution ps The minimum angle/distance (in radians or metres) in which the joint is allowed to approach to its limit pi The influence angle/distance (in radians or metres) in null space motion becomes active Examples -------- The following example gets the ``ets`` of a ``panda`` robot object, instantiates the IK_LM solver class using default parameters, makes a goal pose ``Tep``, and then solves for the joint coordinates which result in the pose ``Tep`` using the `solve` method. .. runblock:: pycon >>> import roboticstoolbox as rtb >>> panda = rtb.models.Panda().ets() >>> solver = rtb.IK_LM() >>> Tep = panda.fkine([0, -0.3, 0, -2.2, 0, 2, 0.7854]) >>> solver.solve(panda, Tep) Notes ----- The value for the ``k`` kwarg will depend on the ``method`` chosen and the arm you are using. Use the following as a rough guide ``chan, k = 1.0 - 0.01``, ``wampler, k = 0.01 - 0.0001``, and ``sugihara, k = 0.1 - 0.0001`` When using the this method, the initial joint coordinates :math:`q_0`, should correspond to a non-singular manipulator pose, since it uses the manipulator Jacobian. This class supports null-space motion to assist with maximising manipulability and avoiding joint limits. These are enabled by setting kq and km to non-zero values. References ---------- - J. Haviland, and P. Corke. "Manipulator Differential Kinematics Part I: Kinematics, Velocity, and Applications." arXiv preprint arXiv:2207.01796 (2022). - J. Haviland, and P. Corke. "Manipulator Differential Kinematics Part II: Acceleration and Advanced Applications." arXiv preprint arXiv:2207.01794 (2022). See Also -------- IKSolver An abstract super class for numerical IK solvers IK_NR Implements the IKSolver class using the Newton-Raphson method IK_GN Implements the IKSolver class using the Gauss-Newton method IK_QP Implements the IKSolver class using a quadratic programming approach .. versionchanged:: 1.0.3 Added the Levemberg-Marquadt IK solver class """ # noqa def __init__( self, name: str = "IK Solver", ilimit: int = 30, slimit: int = 100, tol: float = 1e-6, mask: Union[ArrayLike, None] = None, joint_limits: bool = True, seed: Union[int, None] = None, k: float = 1.0, method="chan", kq: float = 0.0, km: float = 0.0, ps: float = 0.0, pi: Union[np.ndarray, float] = 0.3, **kwargs, ): super().__init__( name=name, ilimit=ilimit, slimit=slimit, tol=tol, mask=mask, joint_limits=joint_limits, seed=seed, **kwargs, ) if method.lower().startswith("sugi"): self.method = 1 method_name = "Sugihara" elif method.lower().startswith("wamp"): self.method = 2 method_name = "Wampler" else: self.method = 0 method_name = "Chan" self.k = k self.kq = kq self.km = km self.ps = ps self.pi = pi self.name = f"LM ({method_name} λ={k})" if self.kq > 0.0: self.name += " Σ" if self.km > 0.0: self.name += " Jm"
[docs] def step(self, ets: "rtb.ETS", Tep: np.ndarray, q: np.ndarray): r""" Performs a single iteration of the Levenberg-Marquadt optimisation The operation is defined by the choice of `method` when instantiating the class. The next step is deined as .. math:: \vec{q}_{k+1} &= \vec{q}_k + \left( \mat{A}_k \right)^{-1} \bf{g}_k \\ % \mat{A}_k &= {\mat{J}(\vec{q}_k)}^\top \mat{W}_e \ {\mat{J}(\vec{q}_k)} + \mat{W}_n where :math:`\mat{W}_n = \text{diag}(\vec{w_n})(\vec{w_n} \in \mathbb{R}^n_{>0})` is a diagonal damping matrix. The damping matrix ensures that :math:`\mat{A}_k` is non-singular and positive definite. The performance of the LM method largely depends on the choice of :math:`\mat{W}_n`. **Chan's Method** Chan proposed .. math:: \mat{W}_n = λ E_k \mat{1}_n where λ is a constant which reportedly does not have much influence on performance. Use the kwarg `k` to adjust the weighting term λ. **Sugihara's Method** Sugihara proposed .. math:: \mat{W}_n = E_k \mat{1}_n + \text{diag}(\hat{\vec{w}}_n) where :math:`\hat{\vec{w}}_n \in \mathbb{R}^n`, :math:`\hat{w}_{n_i} = l^2 \sim 0.01 l^2`, and :math:`l` is the length of a typical link within the manipulator. We provide the variable `k` as a kwarg to adjust the value of :math:`w_n`. **Wampler's Method** Wampler proposed :math:`\vec{w_n}` to be a constant. This is set through the `k` kwarg. Parameters ---------- ets The ETS representing the manipulators kinematics Tep The desired end-effector pose q The current joint coordinate vector Raises ------ numpy.LinAlgError If a step is impossible due to a linear algebra error Returns ------- E The new error value q The new joint coordinate vector """ # noqa Te = ets.eval(q) e, E = self.error(Te, Tep) if self.method == 1: # Sugihara's method Wn = E * np.eye(ets.n) + self.k * np.eye(ets.n) elif self.method == 2: # Wampler's method Wn = self.k * np.eye(ets.n) else: # Chan's method Wn = self.k * E * np.eye(ets.n) J = ets.jacob0(q) g = J.T @ self.We @ e # Null-space motion qnull = _calc_qnull( ets=ets, q=q, J=J, λΣ=self.kq, λm=self.km, ps=self.ps, pi=self.pi ) q[ets.jindices] += np.linalg.inv(J.T @ self.We @ J + Wn) @ g + qnull return E, q[ets.jindices]
[docs]class IK_GN(IKSolver): """ Gauss-Newton Numerical Inverse Kinematics Solver A class which provides functionality to perform numerical inverse kinematics (IK) using the Gauss-Newton method. See `step` method for mathematical description. Note ---- When using this class with redundant robots (>6 DoF), ``pinv`` must be set to ``True`` Parameters ---------- name The name of the IK algorithm ilimit How many iterations are allowed within a search before a new search is started slimit How many searches are allowed before being deemed unsuccessful tol Maximum allowed residual error E mask A 6 vector which assigns weights to Cartesian degrees-of-freedom error priority joint_limits Reject solutions with joint limit violations seed A seed for the private RNG used to generate random joint coordinate vectors pinv If True, will use the psuedoinverse in the `step` method instead of the normal inverse kq The gain for joint limit avoidance. Setting to 0.0 will remove this completely from the solution km The gain for maximisation. Setting to 0.0 will remove this completely from the solution ps The minimum angle/distance (in radians or metres) in which the joint is allowed to approach to its limit pi The influence angle/distance (in radians or metres) in null space motion becomes active Examples -------- The following example gets the ``ets`` of a ``panda`` robot object, instantiates the `IK_GN` solver class using default parameters, makes a goal pose ``Tep``, and then solves for the joint coordinates which result in the pose ``Tep`` using the `solve` method. .. runblock:: pycon >>> import roboticstoolbox as rtb >>> panda = rtb.models.Panda().ets() >>> solver = rtb.IK_GN(pinv=True) >>> Tep = panda.fkine([0, -0.3, 0, -2.2, 0, 2, 0.7854]) >>> solver.solve(panda, Tep) Notes ----- When using the this method, the initial joint coordinates :math:`q_0`, should correspond to a non-singular manipulator pose, since it uses the manipulator Jacobian. When the the problem is solvable, it converges very quickly. This class supports null-space motion to assist with maximising manipulability and avoiding joint limits. These are enabled by setting kq and km to non-zero values. References ---------- - J. Haviland, and P. Corke. "Manipulator Differential Kinematics Part I: Kinematics, Velocity, and Applications." arXiv preprint arXiv:2207.01796 (2022). - J. Haviland, and P. Corke. "Manipulator Differential Kinematics Part II: Acceleration and Advanced Applications." arXiv preprint arXiv:2207.01794 (2022). See Also -------- IKSolver An abstract super class for numerical IK solvers IK_NR Implements IKSolver using the Newton-Raphson method IK_LM Implements IKSolver using the Levemberg-Marquadt method IK_QP Implements IKSolver using a quadratic programming approach .. versionchanged:: 1.0.3 Added the Gauss-Newton IK solver class """ # noqa def __init__( self, name: str = "IK Solver", ilimit: int = 30, slimit: int = 100, tol: float = 1e-6, mask: Union[ArrayLike, None] = None, joint_limits: bool = True, seed: Union[int, None] = None, pinv: bool = False, kq: float = 0.0, km: float = 0.0, ps: float = 0.0, pi: Union[np.ndarray, float] = 0.3, **kwargs, ): super().__init__( name=name, ilimit=ilimit, slimit=slimit, tol=tol, mask=mask, joint_limits=joint_limits, seed=seed, **kwargs, ) self.pinv = pinv self.kq = kq self.km = km self.ps = ps self.pi = pi self.name = f"GN (pinv={pinv})" if self.kq > 0.0: self.name += " Σ" if self.km > 0.0: self.name += " Jm"
[docs] def step( self, ets: "rtb.ETS", Tep: np.ndarray, q: np.ndarray ) -> Tuple[float, np.ndarray]: r""" Performs a single iteration of the Gauss-Newton optimisation method The next step is defined as .. math:: \vec{q}_{k+1} &= \vec{q}_k + \left( {\mat{J}(\vec{q}_k)}^\top \mat{W}_e \ {\mat{J}(\vec{q}_k)} \right)^{-1} \bf{g}_k \\ \bf{g}_k &= {\mat{J}(\vec{q}_k)}^\top \mat{W}_e \vec{e}_k where :math:`\mat{J} = {^0\mat{J}}` is the base-frame manipulator Jacobian. If :math:`\mat{J}(\vec{q}_k)` is non-singular, and :math:`\mat{W}_e = \mat{1}_n`, then the above provides the pseudoinverse solution. However, if :math:`\mat{J}(\vec{q}_k)` is singular, the above can not be computed and the GN solution is infeasible. Parameters ---------- ets The ETS representing the manipulators kinematics Tep The desired end-effector pose q The current joint coordinate vector Raises ------ numpy.LinAlgError If a step is impossible due to a linear algebra error Returns ------- E The new error value q The new joint coordinate vector """ # noqa Te = ets.eval(q) e, E = self.error(Te, Tep) J = ets.jacob0(q) # Null-space motion qnull = _calc_qnull( ets=ets, q=q, J=J, λΣ=self.kq, λm=self.km, ps=self.ps, pi=self.pi ) if self.pinv: q[ets.jindices] += np.linalg.pinv(J) @ e + qnull else: q[ets.jindices] += np.linalg.inv(J) @ e + qnull return E, q[ets.jindices]
[docs]class IK_QP(IKSolver): """ Quadratic Progamming Numerical Inverse Kinematics Solver A class which provides functionality to perform numerical inverse kinematics (IK) using a quadratic progamming approach. See `step` method for mathematical description. Parameters ---------- name The name of the IK algorithm ilimit How many iterations are allowed within a search before a new search is started slimit How many searches are allowed before being deemed unsuccessful tol Maximum allowed residual error E mask A 6 vector which assigns weights to Cartesian degrees-of-freedom error priority joint_limits Reject solutions with joint limit violations seed A seed for the private RNG used to generate random joint coordinate vectors kj A gain for joint velocity norm minimisation ks A gain which adjusts the cost of slack (intentional error) kq The gain for joint limit avoidance. Setting to 0.0 will remove this completely from the solution km The gain for maximisation. Setting to 0.0 will remove this completely from the solution ps The minimum angle/distance (in radians or metres) in which the joint is allowed to approach to its limit pi The influence angle/distance (in radians or metres) in null space motion becomes active Raises ------ ImportError If the package ``qpsolvers`` is not installed Examples -------- The following example gets the ``ets`` of a ``panda`` robot object, instantiates the `IK_QP` solver class using default parameters, makes a goal pose ``Tep``, and then solves for the joint coordinates which result in the pose ``Tep`` using the `solve` method. .. runblock:: pycon >>> import roboticstoolbox as rtb >>> panda = rtb.models.Panda().ets() >>> solver = rtb.IK_QP() >>> Tep = panda.fkine([0, -0.3, 0, -2.2, 0, 2, 0.7854]) >>> solver.solve(panda, Tep) Notes ----- When using the this method, the initial joint coordinates :math:`q_0`, should correspond to a non-singular manipulator pose, since it uses the manipulator Jacobian. When the the problem is solvable, it converges very quickly. References ---------- - J. Haviland, and P. Corke. "Manipulator Differential Kinematics Part II: Acceleration and Advanced Applications." arXiv preprint arXiv:2207.01794 (2022). See Also -------- IKSolver An abstract super class for numerical IK solvers IK_NR Implements IKSolver class using the Newton-Raphson method IK_GN Implements IKSolver class using the Gauss-Newton method IK_LM Implements IKSolver class using the Levemberg-Marquadt method .. versionchanged:: 1.0.3 Added the Quadratic Programming IK solver class """ # noqa def __init__( self, name: str = "IK Solver", ilimit: int = 30, slimit: int = 100, tol: float = 1e-6, mask: Union[ArrayLike, None] = None, joint_limits: bool = True, seed: Union[int, None] = None, kj=0.01, ks=1.0, kq: float = 0.0, km: float = 0.0, ps: float = 0.0, pi: Union[np.ndarray, float] = 0.3, **kwargs, ): if not _qp: # pragma: nocover raise ImportError( "the package qpsolvers is required for this class. \nInstall using 'pip" " install qpsolvers'" ) super().__init__( name=name, ilimit=ilimit, slimit=slimit, tol=tol, mask=mask, joint_limits=joint_limits, seed=seed, **kwargs, ) self.kj = kj self.ks = ks self.kq = kq self.km = km self.ps = ps self.pi = pi self.name = "QP)" if self.kq > 0.0: self.name += " Σ" if self.km > 0.0: self.name += " Jm"
[docs] def step( self, ets: "rtb.ETS", Tep: np.ndarray, q: np.ndarray ) -> Tuple[float, np.ndarray]: r""" Performs a single iteration of the Gauss-Newton optimisation method The next step is defined as .. math:: \vec{q}_{k+1} = \vec{q}_{k} + \dot{\vec{q}}. where the QP is defined as .. math:: \min_x \quad f_o(\vec{x}) &= \frac{1}{2} \vec{x}^\top \mathcal{Q} \vec{x}+ \mathcal{C}^\top \vec{x}, \\ \text{subject to} \quad \mathcal{J} \vec{x} &= \vec{\nu}, \\ \mathcal{A} \vec{x} &\leq \mathcal{B}, \\ \vec{x}^- &\leq \vec{x} \leq \vec{x}^+ with .. math:: \vec{x} &= \begin{pmatrix} \dvec{q} \\ \vec{\delta} \end{pmatrix} \in \mathbb{R}^{(n+6)} \\ \mathcal{Q} &= \begin{pmatrix} \lambda_q \mat{1}_{n} & \mathbf{0}_{6 \times 6} \\ \mathbf{0}_{n \times n} & \lambda_\delta \mat{1}_{6} \end{pmatrix} \in \mathbb{R}^{(n+6) \times (n+6)} \\ \mathcal{J} &= \begin{pmatrix} \mat{J}(\vec{q}) & \mat{1}_{6} \end{pmatrix} \in \mathbb{R}^{6 \times (n+6)} \\ \mathcal{C} &= \begin{pmatrix} \mat{J}_m \\ \bf{0}_{6 \times 1} \end{pmatrix} \in \mathbb{R}^{(n + 6)} \\ \mathcal{A} &= \begin{pmatrix} \mat{1}_{n \times n + 6} \\ \end{pmatrix} \in \mathbb{R}^{(l + n) \times (n + 6)} \\ \mathcal{B} &= \eta \begin{pmatrix} \frac{\rho_0 - \rho_s} {\rho_i - \rho_s} \\ \vdots \\ \frac{\rho_n - \rho_s} {\rho_i - \rho_s} \end{pmatrix} \in \mathbb{R}^{n} \\ \vec{x}^{-, +} &= \begin{pmatrix} \dvec{q}^{-, +} \\ \vec{\delta}^{-, +} \end{pmatrix} \in \mathbb{R}^{(n+6)}, where :math:`\vec{\delta} \in \mathbb{R}^6` is the slack vector, :math:`\lambda_\delta \in \mathbb{R}^+` is a gain term which adjusts the cost of the norm of the slack vector in the optimiser, :math:`\dvec{q}^{-,+}` are the minimum and maximum joint velocities, and :math:`\dvec{\delta}^{-,+}` are the minimum and maximum slack velocities. Parameters ---------- ets The ETS representing the manipulators kinematics Tep The desired end-effector pose q The current joint coordinate vector Raises ------ numpy.LinAlgError If a step is impossible due to a linear algebra error Returns ------- E The new error value q The new joint coordinate vector """ # noqa Te = ets.eval(q) e, E = self.error(Te, Tep) J = ets.jacob0(q) if isinstance(self.pi, float): self.pi = self.pi * np.ones(ets.n) # Quadratic component of objective function Q = np.eye(ets.n + 6) # Joint velocity component of Q Q[: ets.n, : ets.n] *= self.kj # Slack component of Q Q[ets.n :, ets.n :] = self.ks * (1 / np.sum(np.abs(e))) * np.eye(6) # The equality contraints Aeq = np.concatenate((J, np.eye(6)), axis=1) beq = e.reshape((6,)) # The inequality constraints for joint limit avoidance if self.kq > 0.0: Ain = np.zeros((ets.n + 6, ets.n + 6)) bin = np.zeros(ets.n + 6) # Form the joint limit velocity damper Ain_l = np.zeros((ets.n, ets.n)) Bin_l = np.zeros(ets.n) for i in range(ets.n): ql0 = ets.qlim[0, i] ql1 = ets.qlim[1, i] if ql1 - q[i] <= self.pi[i]: Bin_l[i] = ((ql1 - q[i]) - self.ps) / (self.pi[i] - self.ps) Ain_l[i, i] = 1 if q[i] - ql0 <= self.pi[i]: Bin_l[i] = -(((ql0 - q[i]) + self.ps) / (self.pi[i] - self.ps)) Ain_l[i, i] = -1 Ain[: ets.n, : ets.n] = Ain_l bin[: ets.n] = (1.0 / self.kq) * Bin_l else: Ain = None bin = None # Manipulability maximisation if self.km > 0.0: Jm = ets.jacobm(q).reshape((ets.n,)) c = np.concatenate(((1.0 / self.km) * -Jm, np.zeros(6))) else: c = np.zeros(ets.n + 6) xd = qp.solve_qp(Q, c, Ain, bin, Aeq, beq, lb=None, ub=None, solver="quadprog") if xd is None: # pragma: nocover raise np.linalg.LinAlgError("QP Unsolvable") q += xd[: ets.n] return E, q
if __name__ == "__main__": # pragma nocover sol = IKSolution( np.array([1, 2, 3]), success=True, iterations=10, searches=100, residual=0.1 ) a, b, c, d, e = sol print(a, b, c, d, e)