Robot.ikine_QP

Robot.ikine_QP(Tep, end=None, start=None, q0=None, ilimit=30, slimit=100, tol=1e-06, mask=None, joint_limits=True, seed=None, kj=1.0, ks=1.0, kq=0.0, km=0.0, ps=0.0, pi=0.3, **kwargs)

Quadratic Programming Numerical Inverse Kinematics Solver

A method that provides functionality to perform numerical inverse kinematics (IK) using a quadratic progamming approach.

See the Inverse Kinematics Docs Page for more details and for a tutorial on numerical IK, see here.

Parameters:
  • Tep (Union[ndarray, SE3]) – The desired end-effector pose

  • end (Union[str, Link, Gripper, None]) – the link considered as the end-effector

  • start (Union[str, Link, Gripper, None]) – the link considered as the base frame, defaults to the robots’s base frame

  • q0 (Union[ndarray, List[float], Tuple[float], Set[float], None]) – The initial joint coordinate vector

  • ilimit (int) – How many iterations are allowed within a search before a new search is started

  • slimit (int) – How many searches are allowed before being deemed unsuccessful

  • tol (float) – Maximum allowed residual error E

  • mask (Union[ndarray, List[float], Tuple[float], Set[float], None]) – A 6 vector which assigns weights to Cartesian degrees-of-freedom error priority

  • joint_limits (bool) – Reject solutions with joint limit violations

  • seed (Optional[int]) – A seed for the private RNG used to generate random joint coordinate vectors

  • kj – A gain for joint velocity norm minimisation

  • ks – A gain which adjusts the cost of slack (intentional error)

  • kq (float) – The gain for joint limit avoidance. Setting to 0.0 will remove this completely from the solution

  • km (float) – The gain for maximisation. Setting to 0.0 will remove this completely from the solution

  • ps (float) – The minimum angle/distance (in radians or metres) in which the joint is allowed to approach to its limit

  • pi (Union[ndarray, float]) – The influence angle/distance (in radians or metres) in null space motion becomes active

Raises:

ImportError – If the package qpsolvers is not installed

Synopsis

Each iteration uses the following approach

\[\vec{q}_{k+1} = \vec{q}_{k} + \dot{\vec{q}}.\]

where the QP is defined as

\[\begin{split}\min_x \quad f_o(\vec{x}) &= \frac{1}{2} \vec{x}^\top \mathcal{Q} \vec{x}+ \mathcal{C}^\top \vec{x}, \\ \text{subject to} \quad \mathcal{J} \vec{x} &= \vec{\nu}, \\ \mathcal{A} \vec{x} &\leq \mathcal{B}, \\ \vec{x}^- &\leq \vec{x} \leq \vec{x}^+\end{split}\]

with

\[\begin{split}\vec{x} &= \begin{pmatrix} \dvec{q} \\ \vec{\delta} \end{pmatrix} \in \mathbb{R}^{(n+6)} \\ \mathcal{Q} &= \begin{pmatrix} \lambda_q \mat{1}_{n} & \mathbf{0}_{6 \times 6} \\ \mathbf{0}_{n \times n} & \lambda_\delta \mat{1}_{6} \end{pmatrix} \in \mathbb{R}^{(n+6) \times (n+6)} \\ \mathcal{J} &= \begin{pmatrix} \mat{J}(\vec{q}) & \mat{1}_{6} \end{pmatrix} \in \mathbb{R}^{6 \times (n+6)} \\ \mathcal{C} &= \begin{pmatrix} \mat{J}_m \\ \bf{0}_{6 \times 1} \end{pmatrix} \in \mathbb{R}^{(n + 6)} \\ \mathcal{A} &= \begin{pmatrix} \mat{1}_{n \times n + 6} \\ \end{pmatrix} \in \mathbb{R}^{(l + n) \times (n + 6)} \\ \mathcal{B} &= \eta \begin{pmatrix} \frac{\rho_0 - \rho_s} {\rho_i - \rho_s} \\ \vdots \\ \frac{\rho_n - \rho_s} {\rho_i - \rho_s} \end{pmatrix} \in \mathbb{R}^{n} \\ \vec{x}^{-, +} &= \begin{pmatrix} \dvec{q}^{-, +} \\ \vec{\delta}^{-, +} \end{pmatrix} \in \mathbb{R}^{(n+6)},\end{split}\]

where \(\vec{\delta} \in \mathbb{R}^6\) is the slack vector, \(\lambda_\delta \in \mathbb{R}^+\) is a gain term which adjusts the cost of the norm of the slack vector in the optimiser, \(\dvec{q}^{-,+}\) are the minimum and maximum joint velocities, and \(\dvec{\delta}^{-,+}\) are the minimum and maximum slack velocities.

Examples

The following example gets a panda robot object, makes a goal pose Tep, and then solves for the joint coordinates which result in the pose Tep using the ikine_QP method.

  File "/opt/hostedtoolcache/Python/3.7.17/x64/lib/python3.7/site-packages/roboticstoolbox/robot/IK.py", line 1331, in __init__
    "the package qpsolvers is required for this class. \nInstall using 'pip"
ImportError: the package qpsolvers is required for this class. 
Install using 'pip install qpsolvers'

Notes

When using the this method, the initial joint coordinates \(q_0\), should correspond to a non-singular manipulator pose, since it uses the manipulator Jacobian.

This class supports null-space motion to assist with maximising manipulability and avoiding joint limits. These are enabled by setting kq and km to non-zero values.

References

  • J. Haviland, and P. Corke. “Manipulator Differential Kinematics Part I: Kinematics, Velocity, and Applications.” arXiv preprint arXiv:2207.01796 (2022).

  • J. Haviland, and P. Corke. “Manipulator Differential Kinematics Part II: Acceleration and Advanced Applications.” arXiv preprint arXiv:2207.01794 (2022).

See also

IK_NR

An IK Solver class which implements the Newton-Raphson optimisation technique

ikine_LM

Implements the IK_LM class as a method within the ETS class

ikine_GN

Implements the IK_GN class as a method within the ETS class

ikine_NR

Implements the IK_NR class as a method within the ETS class

Changed in version 1.0.4: Added the Quadratic Programming IK solver method on the Robot class