machinevisiontoolbox.Image.labels_MSER
- Image.labels_MSER(**kwargs)
- Blob labelling using MSER - Parameters:
- kwargs – arguments passed to - MSER_create
- Returns:
- label image, number of regions 
- Return type:
- Image, int
 - Compute labels of connected components in the input greyscale image. Regions are sets of contiguous pixels that form stable regions across a range of threshold values. - The method returns the label image and the number of labels N, so labels lie in the range [0, N-1].The value in the label image in an integer indicating which region the corresponding input pixel belongs to. The background has label 0. - Example: - >>> from machinevisiontoolbox import Image >>> img = Image.Squares(2, 15) >>> img.print() 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 >>> labels, N = img.labels_MSER() >>> N 0 >>> labels.print() 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - References:
- Linear time maximally stable extremal regions, David Nistér and Henrik Stewénius, In Computer Vision–ECCV 2008, pages 183–196. Springer, 2008. 
- Robotics, Vision & Control for Python, Section 12.1.2.2, P. Corke, Springer 2023. 
 
- Seealso: