machinevisiontoolbox.Image.rectify_homographies
- Image.rectify_homographies(m, F)
Create rectification homographies
- Parameters:
m (
FeatureMatch
) – corresponding pointsF (ndarray(3,3)) – fundamental matrix
- Returns:
rectification homographies
- Return type:
ndarray(3,3), ndarray(3,3)
Given the epipolar geometry between two images, defined by the fundamental matrix and corresponding points, compute a pair of homographies that can be used to rectify the images so that they are epipolar aligned.
Examples:
>>> walls_l = Image.Read('walls-l.png', reduce=2) >>> walls_r = Image.Read('walls-r.png', reduce=2) >>> sf_l = walls_l.SIFT() >>> sf_r = walls_r.SIFT() >>> matches = sf_l.match(sf_r); >>> F, resid = matches.estimate(CentralCamera.points2F, method="ransac", confidence=0.95); >>> H_l, H_r = walls_l.rectify_homographies(matches, F) >>> walls_l_rect = walls_l.warp_perspective(H_l) >>> walls_r_rect = walls_r.warp_perspective(H_r)
- References:
Robotics, Vision & Control for Python, Section 14.4.3, P. Corke, Springer 2023.
- Seealso: