machinevisiontoolbox.Image.zerocross
- Image.zerocross()
Compute zero crossing
- Returns:
boolean image
- Return type:
Image
instance
Compute a zero-crossing image, where pixels are true if they are adjacent to a change in sign.
Example:
>>> from machinevisiontoolbox import Image >>> U, V = Image.meshgrid(None, 6, 6) >>> img = Image(U - V - 2, dtype='float') >>> img.print() -2.00 -1.00 0.00 1.00 2.00 3.00 -3.00 -2.00 -1.00 0.00 1.00 2.00 -4.00 -3.00 -2.00 -1.00 0.00 1.00 -5.00 -4.00 -3.00 -2.00 -1.00 0.00 -6.00 -5.00 -4.00 -3.00 -2.00 -1.00 -7.00 -6.00 -5.00 -4.00 -3.00 -2.00 >>> img.zerocross().print() 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
- Note:
Use morphological filtering with 3x3 structuring element, can lead to erroneous values in border pixels.
- References:
Robotics, Vision & Control for Python, Section 11.5.1.3, P. Corke, Springer 2023.
- Seealso:
Laplace
LoG