# simple wrapper for Open3D that has look and feel like MVTB
import numpy as np
import spatialmath.base as smbase
from spatialmath import SE3
try:
import open3d as o3d
_open3d = True
except ModuleNotFoundError:
_open3d = False
class PointCloud:
def __init__(
self, arg, image=None, colors=None, camera=None, depth_scale=1.0, **kwargs
):
"""
Create new point cloud object
:param arg: point cloud data
:type arg: :obj:`open3d.geometry.PointCloud`, ndarray(3,N)
:param image: image used to create colored point cloud, defaults to None
:type image: :class:`~machinevisiontoolbox.ImageCore.Image`, optional
:param colors: color for points, defaults to None
:type colors: array_like(3), str, optional
:param camera: perspective camera model, defaults to None
:type camera: :class:`~machinevisiontoolbox.Camera.CentralCamera`, optional
:param depth_scale: depth scale factor, defaults to 1.0
:type depth_scale: float, optional
:raises RuntimeError: PointCloud class requires Open3D to be installed: pip install open3d
:raises ValueError: depth array and image must be same shape
:raises ValueError: bad arguments
This object wraps an Open3D :obj:`open3d.geometry.PointCloud` object. It can be
created from:
- an Open3D point cloud object
- a depth image as a 2D array
- an RGBD image as a 2D depth array and a color :class:`~machinevisiontoolbox.Image`. Camera
intrinsics can be provided by a :class:`~machinevisiontoolbox.CentralCamera` instance.
.. warning:: Open3D must be installed.
:seealso: :obj:`open3d.geometry.PointCloud` :class:`~machinevisiontoolbox.ImageCore.Image` :class:`~machinevisiontoolbox.Camera.CentralCamera`
"""
if not _open3d:
raise RuntimeError(
"PointCloud class requires Open3D to be installed: pip install open3d"
)
if isinstance(arg, o3d.geometry.PointCloud):
pcd = arg
elif isinstance(arg, np.ndarray):
arg = arg.astype("float32")
if arg.ndim == 2 and arg.shape[0] == 3:
# simple point cloud:
# passed a 3xN array of point coordinates
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(arg.T)
if colors is not None and colors.shape == arg.shape:
if np.issubdtype(colors.dtype, np.integer):
colors = colors / np.iinfo(colors.dtype).max
pcd.colors = o3d.utility.Vector3dVector(colors.T)
elif (
isinstance(arg, np.ndarray) and image is not None and camera is not None
):
# colored point cloud:
# passed a WxH array of depth plus a WxH image
if arg.shape != image.shape[:2]:
print(arg.shape, image.image.shape)
raise ValueError("depth array and image must be same shape")
if image.iscolor and "convert_rgb_to_intensity" not in kwargs:
kwargs["convert_rgb_to_intensity"] = False
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
o3d.geometry.Image(image.image),
o3d.geometry.Image(arg),
depth_scale=depth_scale,
**kwargs,
)
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(
rgbd_image,
o3d.camera.PinholeCameraIntrinsic(
image.width, image.height, *camera.fpix, *camera.pp
),
)
else:
raise ValueError("bad arguments")
else:
raise ValueError("arg must be PointCloud or ndarray")
self._pcd = pcd
[docs]
def copy(self):
"""
Copy point cloud
:return: copy of point cloud
:rtype: :class:`PointCloud`
Return a new point cloud instance that contains a copy of
the point data.
"""
return self.__class__(o3d.geometry.PointCloud(self._pcd))
[docs]
def __len__(self):
"""
Number of points
:return: number of points
:rtype: int
"""
return np.asarray(self._pcd.points).shape[0]
# allow methods of o3d.geometry.PointCloud to be invoked indirectly
[docs]
def __getattr__(self, name):
"""
Access Open3D point cloud attribute
:param name: attribute name
:type name: str
If ``P`` is a :class:`PointCloud` then ``P.name`` invokes
attribute ``name`` of the underlying :obj:`open3d.geometry.PointCloud`
object.
:note: This is an alternative to explicitly wrapping all
those properties and methods.
"""
def wrapper(*args, **kwargs):
meth = getattr(self._pcd, name)
return meth(*args, **kwargs)
if hasattr(self._pcd, name):
return wrapper
[docs]
def __str__(self):
"""
Concise string representation of point cloud parameters
:return: _description_
:rtype: _type_
"""
return str(self._pcd)
[docs]
def __repr__(self):
return str(self)
@property
def pcd(self):
return self._pcd
@property
def points(self):
"""
Get points as array
:return: points as array
:rtype: ndarray(3,N)
Points are returned as columns of the array.
"""
return np.asarray(self._pcd.points).T
@property
def colors(self):
"""
Get point color data as array
:return: point color
:rtype: ndarray(3,N)
Point colors are returned as columns of the array.
"""
return np.asarray(self._pcd.colors).T
[docs]
@classmethod
def Read(cls, filename, *args, **kwargs):
"""
Create point cloud from file
:param filename: name of file
:type filename: str
:return: new point cloud
:rtype: :class:`PointCloud` instance
Read point cloud data from a file using :meth:`~open3d.io.read_point_cloud`.
Supported filetypes include PLY.
If the path is not absolute it is first searched for relative
to the current directory, and if not found, it is searched for in
the ``data`` folder of the
```mvtb_data`` package <https://github.com/petercorke/machinevision-toolbox-python/tree/master/mvtb-data>`_.
"""
from machinevisiontoolbox import mvtb_path_to_datafile
filename = mvtb_path_to_datafile("data", filename, string=True)
pcd = o3d.io.read_point_cloud(filename, *args, **kwargs)
return cls(pcd)
[docs]
def write(self, filename):
"""
Write point cloud to file
:param filename: name of file
:type filename: str
:return: return status
:rtype: bool
The file format is determined by the file extension.
"""
return o3d.io.write_point_cloud(filename, self._pcd)
[docs]
def disp(self, block=False, file=None, **kwargs):
"""
Display point cloud using Open3D
:param block: block until window dismissed, defaults to False
:type block: bool, optional
:param file: save display as an image, defaults to None
:type file: str, optional
:param front: set front vector
:type front: array_like(3)
:param lookat: set lookat vector
:type lookat: array_like(3)
:param up: set up vector
:type up: array_like(3)
:param zoom: set zoom value
:type zoom: float
Various viewing options are passed to the Open3D :class:`open3d.visualization.ViewControl`.
:seealso: :class:`open3d.visualization.ViewControl`
"""
if block:
o3d.visualization.draw_geometries([self._pcd], **kwargs)
else:
# nonblocking display
vis = o3d.visualization.Visualizer()
vis.create_window()
vis.add_geometry(self._pcd)
# get object to control viewpoint
view_control = vis.get_view_control()
# handle the possible options
if "front" in kwargs:
view_control.set_front(kwargs["front"])
if "lookat" in kwargs:
view_control.set_lookat(kwargs["lookat"])
if "up" in kwargs:
view_control.set_up(kwargs["up"])
if "zoom" in kwargs:
view_control.set_zoom(kwargs["zoom"])
# update the display
vis.poll_events()
vis.update_renderer()
# save to file if requested
if file is not None:
vis.capture_screen_image(str(file), do_render=False)
[docs]
def __rmul__(self, T):
"""
Overload * opeator to transform points
:param T: _description_
:type T: :class:`~spatialmath.pose3d.SE3`
:return: point cloud
:rtype: :class:`PointCloud`
Transform a :class:`PointCloud` by premultiplying by an
:class:`~spatialmath..pose3d.SE3` instance.
:seealso: :meth:`transform` :meth:`__imul__`
"""
if isinstance(T, SE3):
return self.copy().transform(T)
else:
return NotImplemented
[docs]
def __imul__(self, T):
"""
Overload *= opeator to transform points
:param T: _description_
:type T: :class:`~spatialmath.pose3d.SE3`
:return: point cloud
:rtype: :class:`PointCloud`
Transform a :class:`PointCloud` by inplace multiplication by an
:class:`~spatialmath..pose3d.SE3` instance.
:seealso: :meth:`__rmul__` :meth:`transform`
"""
if isinstance(T, SE3):
self.transform(T)
return self
else:
return NotImplemented
[docs]
def __add__(self, other):
"""
Overload the + operator to concatenate point clouds
:param other: second point cloud
:type other: :class:`PointCloud`
:return: concatenated point clouds
:rtype: :class:`PointCloud`
"""
pcd = o3d.geometry.PointCloud()
pcd.points.extend(self.points.T)
pcd.points.extend(other.points.T)
pcd.colors.extend(self.colors.T)
pcd.colors.extend(other.colors.T)
return self.__class__(pcd)
[docs]
def downsample_voxel(self, voxel_size):
"""
Downsample point cloud by voxelization
:param voxel_size: voxel dimension
:type voxel_size: float
:return: downsampled point cloud
:rtype: :class:`PointCloud`
Point cloud resolution is reduced by keeping only one
point per voxel.
:seealso: :meth:`downsample_random`
"""
return self.__class__(self._pcd.voxel_down_sample(voxel_size))
# random downsample
[docs]
def downsample_random(self, fraction, seed=None):
"""
Downsample point cloud by random selection
:param fraction: fraction of points to retain
:type fraction: float
:param seed: random number seed, defaults to None
:type seed: int, optional
:return: downsampled point cloud
:rtype: :class:`PointCloud`
Point cloud resolution is reduced by randomly selecting
a subset of points.
:seealso: :meth:`downsample_random`
"""
if seed is None:
return self.__class__(self._pcd.random_down_sample(fraction))
if seed >= 0:
np.random.seed(seed)
n = len(self)
ind = np.random.choice(n, int(fraction * n), replace=False)
return self.__class__(self._pcd.select_by_index(ind))
[docs]
def normals(self, **kwargs):
"""
Estimate point normals
Normals are computed and stored within the Open3D point cloud
object. They are displayed when the point cloud is displayed.
:seealso: :meth:`disp` :meth:`open3d.geometry.PointCloud.estimate_normals`
"""
# radius=0.1, max_nn=30
self._pcd.estimate_normals(
search_param=o3d.geometry.KDTreeSearchParamHybrid(**kwargs)
)
[docs]
def remove_outlier(self, **kwargs):
"""
Remove point cloud outliers
:return: cleaned up point cloud
:rtype: :class:`PointCloud`
Remove outlying points.
:seealso: :meth:`open3d.geometry.PointCloud.remove_radius_outlier`
"""
# nb_points=16, radius=0.2
pcd, ind = self._pcd.remove_radius_outlier(**kwargs)
return self.__class__(pcd)
[docs]
def segment_plane(self, **kwargs):
# distance_threshold=0.05,
# ransac_n=3,
# num_iterations=1000
default_dict = dict(ransac_n=3, num_iterations=100)
kwargs = {**default_dict, **kwargs}
plane_model, inliers = self._pcd.segment_plane(**kwargs)
inlier_cloud = self._pcd.select_by_index(inliers)
outlier_cloud = self._pcd.select_by_index(inliers, invert=True)
return plane_model, self.__class__(inlier_cloud), self.__class__(outlier_cloud)
[docs]
def select(self, ind, invert=False):
"""
Select points by index
:param ind: indices into point cloud
:type ind: ndarray()
:param invert: exclude points, defaults to False
:type invert: bool, optional
:return: subset of point cloud
:rtype: :class:`PointCloud`
Create point cloud from points with indices given by integer
array ``ind``. If ``invert`` is True then select those points
not given by ``ind``.
"""
return self.__class__(self._pcd.select_by_index(ind, invert=invert))
[docs]
def paint(self, color):
"""
Colorize point cloud
:param color: color for points
:type color: array_like(3), str
:return: colorized point cloud
:rtype: :class:`PointCloud`
Paint all points in the point cloud this color.
"""
self._pcd.paint_uniform_color(color)
return self
[docs]
def ICP(self, data, T0=None, max_correspondence_distance=1, **kwargs):
"""
Register point cloud using ICP
:param data: point cloud to register
:type data: :class:`PointCloud`
:param T0: initial transform, defaults to None
:type T0: :class:`~spatialmath..pose3d.SE3`, optional
:param max_correspondence_distance: distance beyond which correspondence is broken, defaults to 1
:type max_correspondence_distance: float, optional
:return: pose of ``data`` with respect to instance poiints
:rtype: :class:`~spatialmath..pose3d.SE3`
:seealso: :obj:`open3d.pipelines.registration.TransformationEstimationPointToPoint`
"""
estimation = o3d.pipelines.registration.TransformationEstimationPointToPoint()
# Convergence-Criteria for Vanilla ICP
criteria = o3d.pipelines.registration.ICPConvergenceCriteria(**kwargs)
if T0 is None:
T0 = np.eye(4)
else:
T0 = T0.A
status = o3d.pipelines.registration.registration_icp(
self._pcd, data._pcd, max_correspondence_distance, T0, estimation, criteria
)
# voxel_size, save_loss_log)
T = SE3(smbase.trnorm(status.transformation))
return T, status
[docs]
def voxel_grid(self, voxel_size):
"""
Voxelize point cloud
:param voxel_size: voxel dimension
:type voxel_size: float
:return: voxel grid
:rtype: :class:`VoxelGrid`
"""
return VoxelGrid(self, voxel_size)
class VoxelGrid:
def __init__(self, pcd, voxel_size):
self._voxels = o3d.geometry.VoxelGrid.create_from_point_cloud(
pcd._pcd, voxel_size=voxel_size
)
def write(self, filename):
"""
Write voxel grid to file
:param filename: filename
:type filename: str
:seealso: :obj:`open3d.io.write_voxel_grid`
"""
o3d.io.write_voxel_grid(filename, self._voxels)
def disp(self, block=True, file=None, **kwargs):
"""
Display voxel grid
:param block: block until window is dismissed, defaults to True
:type block: bool, optional
:param file: save display to this filename, defaults to None
:type file: str, optional
"""
if block:
o3d.visualization.draw_geometries([self._voxels], **kwargs)
else:
# nonblocking display
vis = o3d.visualization.Visualizer()
vis.create_window()
vis.add_geometry(self._voxels)
# get object to control viewpoint
view_control = vis.get_view_control()
# handle the possible options
if "front" in kwargs:
view_control.set_front(kwargs["front"])
if "lookat" in kwargs:
view_control.set_lookat(kwargs["lookat"])
if "up" in kwargs:
view_control.set_up(kwargs["up"])
if "zoom" in kwargs:
view_control.set_zoom(kwargs["zoom"])
render = vis.get_render_option()
render.mesh_show_wireframe = True
# update the display
vis.poll_events()
vis.update_renderer()
# save to file if requested
if file is not None:
vis.capture_screen_image(str(file), do_render=False)
if __name__ == "__main__":
from machinevisiontoolbox import mvtb_path_to_datafile
pcd = PointCloud.Read(mvtb_path_to_datafile("data", "bunny.ply"))
print(pcd)
pcd.disp(block=False, file="bun.png")
# import time
# time.sleep(4)