Source code for machinevisiontoolbox.PointCloud

# simple wrapper for Open3D that has look and feel like MVTB

import numpy as np
import spatialmath.base as smbase
from spatialmath import SE3

try:
    import open3d as o3d

    _open3d = True
except ModuleNotFoundError:
    _open3d = False


class PointCloud:
    def __init__(
        self, arg, image=None, colors=None, camera=None, depth_scale=1.0, **kwargs
    ):
        """
        Create new point cloud object

        :param arg: point cloud data
        :type arg: :obj:`open3d.geometry.PointCloud`, ndarray(3,N)
        :param image: image used to create colored point cloud, defaults to None
        :type image: :class:`~machinevisiontoolbox.ImageCore.Image`, optional
        :param colors: color for points, defaults to None
        :type colors: array_like(3), str, optional
        :param camera: perspective camera model, defaults to None
        :type camera: :class:`~machinevisiontoolbox.Camera.CentralCamera`, optional
        :param depth_scale: depth scale factor, defaults to 1.0
        :type depth_scale: float, optional
        :raises RuntimeError: PointCloud class requires Open3D to be installed: pip install open3d
        :raises ValueError: depth array and image must be same shape
        :raises ValueError: bad arguments

        This object wraps an Open3D :obj:`open3d.geometry.PointCloud` object.  It can be
        created from:

        - an Open3D point cloud object
        - a depth image as a 2D array
        - an RGBD image as a 2D depth array and a color :class:`~machinevisiontoolbox.Image`.  Camera
          intrinsics can be provided by a :class:`~machinevisiontoolbox.CentralCamera` instance.

        .. warning:: Open3D must be installed.

        :seealso: :obj:`open3d.geometry.PointCloud` :class:`~machinevisiontoolbox.ImageCore.Image` :class:`~machinevisiontoolbox.Camera.CentralCamera`
        """
        if not _open3d:
            raise RuntimeError(
                "PointCloud class requires Open3D to be installed: pip install open3d"
            )

        if isinstance(arg, o3d.geometry.PointCloud):
            pcd = arg

        elif isinstance(arg, np.ndarray):

            arg = arg.astype("float32")

            if arg.ndim == 2 and arg.shape[0] == 3:
                # simple point cloud:
                # passed a 3xN array of point coordinates
                pcd = o3d.geometry.PointCloud()
                pcd.points = o3d.utility.Vector3dVector(arg.T)

                if colors is not None and colors.shape == arg.shape:
                    if np.issubdtype(colors.dtype, np.integer):
                        colors = colors / np.iinfo(colors.dtype).max
                    pcd.colors = o3d.utility.Vector3dVector(colors.T)

            elif (
                isinstance(arg, np.ndarray) and image is not None and camera is not None
            ):
                # colored point cloud:
                # passed a WxH array of depth plus a WxH image
                if arg.shape != image.shape[:2]:
                    print(arg.shape, image.image.shape)
                    raise ValueError("depth array and image must be same shape")

                if image.iscolor and "convert_rgb_to_intensity" not in kwargs:
                    kwargs["convert_rgb_to_intensity"] = False
                rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
                    o3d.geometry.Image(image.image),
                    o3d.geometry.Image(arg),
                    depth_scale=depth_scale,
                    **kwargs,
                )

                pcd = o3d.geometry.PointCloud.create_from_rgbd_image(
                    rgbd_image,
                    o3d.camera.PinholeCameraIntrinsic(
                        image.width, image.height, *camera.fpix, *camera.pp
                    ),
                )
            else:
                raise ValueError("bad arguments")
        else:
            raise ValueError("arg must be PointCloud or ndarray")

        self._pcd = pcd

[docs] def copy(self): """ Copy point cloud :return: copy of point cloud :rtype: :class:`PointCloud` Return a new point cloud instance that contains a copy of the point data. """ return self.__class__(o3d.geometry.PointCloud(self._pcd))
[docs] def __len__(self): """ Number of points :return: number of points :rtype: int """ return np.asarray(self._pcd.points).shape[0]
# allow methods of o3d.geometry.PointCloud to be invoked indirectly
[docs] def __getattr__(self, name): """ Access Open3D point cloud attribute :param name: attribute name :type name: str If ``P`` is a :class:`PointCloud` then ``P.name`` invokes attribute ``name`` of the underlying :obj:`open3d.geometry.PointCloud` object. :note: This is an alternative to explicitly wrapping all those properties and methods. """ def wrapper(*args, **kwargs): meth = getattr(self._pcd, name) return meth(*args, **kwargs) if hasattr(self._pcd, name): return wrapper
[docs] def __str__(self): """ Concise string representation of point cloud parameters :return: _description_ :rtype: _type_ """ return str(self._pcd)
[docs] def __repr__(self): return str(self)
@property def pcd(self): return self._pcd @property def points(self): """ Get points as array :return: points as array :rtype: ndarray(3,N) Points are returned as columns of the array. """ return np.asarray(self._pcd.points).T @property def colors(self): """ Get point color data as array :return: point color :rtype: ndarray(3,N) Point colors are returned as columns of the array. """ return np.asarray(self._pcd.colors).T
[docs] @classmethod def Read(cls, filename, *args, **kwargs): """ Create point cloud from file :param filename: name of file :type filename: str :return: new point cloud :rtype: :class:`PointCloud` instance Read point cloud data from a file using :meth:`~open3d.io.read_point_cloud`. Supported filetypes include PLY. If the path is not absolute it is first searched for relative to the current directory, and if not found, it is searched for in the ``data`` folder of the ```mvtb_data`` package <https://github.com/petercorke/machinevision-toolbox-python/tree/master/mvtb-data>`_. """ from machinevisiontoolbox import mvtb_path_to_datafile filename = mvtb_path_to_datafile("data", filename, string=True) pcd = o3d.io.read_point_cloud(filename, *args, **kwargs) return cls(pcd)
[docs] def write(self, filename): """ Write point cloud to file :param filename: name of file :type filename: str :return: return status :rtype: bool The file format is determined by the file extension. """ return o3d.io.write_point_cloud(filename, self._pcd)
[docs] def disp(self, block=False, file=None, **kwargs): """ Display point cloud using Open3D :param block: block until window dismissed, defaults to False :type block: bool, optional :param file: save display as an image, defaults to None :type file: str, optional :param front: set front vector :type front: array_like(3) :param lookat: set lookat vector :type lookat: array_like(3) :param up: set up vector :type up: array_like(3) :param zoom: set zoom value :type zoom: float Various viewing options are passed to the Open3D :class:`open3d.visualization.ViewControl`. :seealso: :class:`open3d.visualization.ViewControl` """ if block: o3d.visualization.draw_geometries([self._pcd], **kwargs) else: # nonblocking display vis = o3d.visualization.Visualizer() vis.create_window() vis.add_geometry(self._pcd) # get object to control viewpoint view_control = vis.get_view_control() # handle the possible options if "front" in kwargs: view_control.set_front(kwargs["front"]) if "lookat" in kwargs: view_control.set_lookat(kwargs["lookat"]) if "up" in kwargs: view_control.set_up(kwargs["up"]) if "zoom" in kwargs: view_control.set_zoom(kwargs["zoom"]) # update the display vis.poll_events() vis.update_renderer() # save to file if requested if file is not None: vis.capture_screen_image(str(file), do_render=False)
[docs] def __rmul__(self, T): """ Overload * opeator to transform points :param T: _description_ :type T: :class:`~spatialmath.pose3d.SE3` :return: point cloud :rtype: :class:`PointCloud` Transform a :class:`PointCloud` by premultiplying by an :class:`~spatialmath..pose3d.SE3` instance. :seealso: :meth:`transform` :meth:`__imul__` """ if isinstance(T, SE3): return self.copy().transform(T) else: return NotImplemented
[docs] def __imul__(self, T): """ Overload *= opeator to transform points :param T: _description_ :type T: :class:`~spatialmath.pose3d.SE3` :return: point cloud :rtype: :class:`PointCloud` Transform a :class:`PointCloud` by inplace multiplication by an :class:`~spatialmath..pose3d.SE3` instance. :seealso: :meth:`__rmul__` :meth:`transform` """ if isinstance(T, SE3): self.transform(T) return self else: return NotImplemented
[docs] def transform(self, T, inplace=True): """ Transform point cloud :param T: _description_ :type T: :class:`~spatialmath..pose3d.SE3` :param inplace: transform points inpace, defaults to True :type inplace: bool, optional :return: point cloud :rtype: :class:`PointCloud` If ``inplace`` is False then the point cloud data is copied before transformation. :seealso: :meth:`__rmul__` :meth:`__imul__` """ if inplace: self._pcd.transform(T.A) return self else: new = self.copy() new._pcd.transform(T.A) return new
[docs] def __add__(self, other): """ Overload the + operator to concatenate point clouds :param other: second point cloud :type other: :class:`PointCloud` :return: concatenated point clouds :rtype: :class:`PointCloud` """ pcd = o3d.geometry.PointCloud() pcd.points.extend(self.points.T) pcd.points.extend(other.points.T) pcd.colors.extend(self.colors.T) pcd.colors.extend(other.colors.T) return self.__class__(pcd)
[docs] def downsample_voxel(self, voxel_size): """ Downsample point cloud by voxelization :param voxel_size: voxel dimension :type voxel_size: float :return: downsampled point cloud :rtype: :class:`PointCloud` Point cloud resolution is reduced by keeping only one point per voxel. :seealso: :meth:`downsample_random` """ return self.__class__(self._pcd.voxel_down_sample(voxel_size))
# random downsample
[docs] def downsample_random(self, fraction, seed=None): """ Downsample point cloud by random selection :param fraction: fraction of points to retain :type fraction: float :param seed: random number seed, defaults to None :type seed: int, optional :return: downsampled point cloud :rtype: :class:`PointCloud` Point cloud resolution is reduced by randomly selecting a subset of points. :seealso: :meth:`downsample_random` """ if seed is None: return self.__class__(self._pcd.random_down_sample(fraction)) if seed >= 0: np.random.seed(seed) n = len(self) ind = np.random.choice(n, int(fraction * n), replace=False) return self.__class__(self._pcd.select_by_index(ind))
[docs] def normals(self, **kwargs): """ Estimate point normals Normals are computed and stored within the Open3D point cloud object. They are displayed when the point cloud is displayed. :seealso: :meth:`disp` :meth:`open3d.geometry.PointCloud.estimate_normals` """ # radius=0.1, max_nn=30 self._pcd.estimate_normals( search_param=o3d.geometry.KDTreeSearchParamHybrid(**kwargs) )
[docs] def remove_outlier(self, **kwargs): """ Remove point cloud outliers :return: cleaned up point cloud :rtype: :class:`PointCloud` Remove outlying points. :seealso: :meth:`open3d.geometry.PointCloud.remove_radius_outlier` """ # nb_points=16, radius=0.2 pcd, ind = self._pcd.remove_radius_outlier(**kwargs) return self.__class__(pcd)
[docs] def segment_plane(self, **kwargs): # distance_threshold=0.05, # ransac_n=3, # num_iterations=1000 default_dict = dict(ransac_n=3, num_iterations=100) kwargs = {**default_dict, **kwargs} plane_model, inliers = self._pcd.segment_plane(**kwargs) inlier_cloud = self._pcd.select_by_index(inliers) outlier_cloud = self._pcd.select_by_index(inliers, invert=True) return plane_model, self.__class__(inlier_cloud), self.__class__(outlier_cloud)
[docs] def select(self, ind, invert=False): """ Select points by index :param ind: indices into point cloud :type ind: ndarray() :param invert: exclude points, defaults to False :type invert: bool, optional :return: subset of point cloud :rtype: :class:`PointCloud` Create point cloud from points with indices given by integer array ``ind``. If ``invert`` is True then select those points not given by ``ind``. """ return self.__class__(self._pcd.select_by_index(ind, invert=invert))
[docs] def paint(self, color): """ Colorize point cloud :param color: color for points :type color: array_like(3), str :return: colorized point cloud :rtype: :class:`PointCloud` Paint all points in the point cloud this color. """ self._pcd.paint_uniform_color(color) return self
[docs] def ICP(self, data, T0=None, max_correspondence_distance=1, **kwargs): """ Register point cloud using ICP :param data: point cloud to register :type data: :class:`PointCloud` :param T0: initial transform, defaults to None :type T0: :class:`~spatialmath..pose3d.SE3`, optional :param max_correspondence_distance: distance beyond which correspondence is broken, defaults to 1 :type max_correspondence_distance: float, optional :return: pose of ``data`` with respect to instance poiints :rtype: :class:`~spatialmath..pose3d.SE3` :seealso: :obj:`open3d.pipelines.registration.TransformationEstimationPointToPoint` """ estimation = o3d.pipelines.registration.TransformationEstimationPointToPoint() # Convergence-Criteria for Vanilla ICP criteria = o3d.pipelines.registration.ICPConvergenceCriteria(**kwargs) if T0 is None: T0 = np.eye(4) else: T0 = T0.A status = o3d.pipelines.registration.registration_icp( self._pcd, data._pcd, max_correspondence_distance, T0, estimation, criteria ) # voxel_size, save_loss_log) T = SE3(smbase.trnorm(status.transformation)) return T, status
[docs] def voxel_grid(self, voxel_size): """ Voxelize point cloud :param voxel_size: voxel dimension :type voxel_size: float :return: voxel grid :rtype: :class:`VoxelGrid` """ return VoxelGrid(self, voxel_size)
class VoxelGrid: def __init__(self, pcd, voxel_size): self._voxels = o3d.geometry.VoxelGrid.create_from_point_cloud( pcd._pcd, voxel_size=voxel_size ) def write(self, filename): """ Write voxel grid to file :param filename: filename :type filename: str :seealso: :obj:`open3d.io.write_voxel_grid` """ o3d.io.write_voxel_grid(filename, self._voxels) def disp(self, block=True, file=None, **kwargs): """ Display voxel grid :param block: block until window is dismissed, defaults to True :type block: bool, optional :param file: save display to this filename, defaults to None :type file: str, optional """ if block: o3d.visualization.draw_geometries([self._voxels], **kwargs) else: # nonblocking display vis = o3d.visualization.Visualizer() vis.create_window() vis.add_geometry(self._voxels) # get object to control viewpoint view_control = vis.get_view_control() # handle the possible options if "front" in kwargs: view_control.set_front(kwargs["front"]) if "lookat" in kwargs: view_control.set_lookat(kwargs["lookat"]) if "up" in kwargs: view_control.set_up(kwargs["up"]) if "zoom" in kwargs: view_control.set_zoom(kwargs["zoom"]) render = vis.get_render_option() render.mesh_show_wireframe = True # update the display vis.poll_events() vis.update_renderer() # save to file if requested if file is not None: vis.capture_screen_image(str(file), do_render=False) if __name__ == "__main__": from machinevisiontoolbox import mvtb_path_to_datafile pcd = PointCloud.Read(mvtb_path_to_datafile("data", "bunny.ply")) print(pcd) pcd.disp(block=False, file="bun.png") # import time # time.sleep(4)